80 research outputs found

    Numerical studies of the 2 and 3D gauge glass at low temperature

    Full text link
    We report results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using parallel tempering Monte Carlo. In two dimensions, we find strong evidence for a zero-temperature transition. By means of finite-size scaling, we determine the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions, where a finite-temperature transition is well established, we find theta = 0.27 +/- 0.01, compatible with recent results from domain-wall renormalization group studies.Comment: 3 pages, 3 figures. Proceedings of "2002 MMM Conference", Tampa, F

    Phase Transitions in the Two-Dimensional XY Model with Random Phases: a Monte Carlo Study

    Full text link
    We study the two-dimensional XY model with quenched random phases by Monte Carlo simulation and finite-size scaling analysis. We determine the phase diagram of the model and study its critical behavior as a function of disorder and temperature. If the strength of the randomness is less than a critical value, σc\sigma_{c}, the system has a Kosterlitz-Thouless (KT) phase transition from the paramagnetic phase to a state with quasi-long-range order. Our data suggest that the latter exists down to T=0 in contradiction with theories that predict the appearance of a low-temperature reentrant phase. At the critical disorder TKT→0T_{KT}\rightarrow 0 and for σ>σc\sigma > \sigma_{c} there is no quasi-ordered phase. At zero temperature there is a phase transition between two different glassy states at σc\sigma_{c}. The functional dependence of the correlation length on σ\sigma suggests that this transition corresponds to the disorder-driven unbinding of vortex pairs.Comment: LaTex file and 18 figure

    Metabolite modifications in Solanum lycopersicum roots and leaves under cadmium stress

    Get PDF
    The effects of cadmium (Cd) were investigated on growth and metabolite profiling in roots and leaves of tomato (Solanum lycopersicum L., Var. Ibiza F1) plants exposed for 3 and 10 days to various CdCl2 concentrations (0 - 300 ìM). The aim of this study was to describe metabolite modifications in response to Cd stress and to identify Cd stress markers in the roots and leaves of tomato plants. During the treatment, Cd accumulated  significantly in the roots compared to stems and leaves. Plant growth (root, stem and leaf) decreased when Cd concentration increased. The analysis of 1H-NMR spectra of polar extracts showed clear differences between metabolites amounts (soluble sugars, organic and amino acids) in 30 and 300 ìM Cd-treated plants versus control ones. Among soluble sugars and organic acids, glucose, fructose and citrate contents significantly increased, by a factor 2 to 5 in both leaves and roots of Cd treated plants during the first three days of the treatment and then only in roots. In addition, Cd induced qualitative and quantitative changes in amino acid contents in the roots. Asparagine, glutamine and branched chain amino acids (valine, isoleucine, phenylalanine and tryptophane) significantly accumulated after 10 days of Cd exposure. Asparagine content which increased by 26 fold in the roots of 300 ìM Cd treated plants when compared with control ones, was found to be a good marker for Cd stress. In contrast, few modifications occurred in the leaves in response to Cd, except for tyrosine which content was highly increased (by 10 fold) after three days of treatment with 30 ìM. Taken together, our results show that, the exposure of tomato plants to various Cd concentrations results in significant changes in primary metabolism compounds, especially in the accumulation of some amino and organic acids involved in cellular compartmentation and detoxification of Cd.Key words: Cadmium, sugars, organic acids, amino acids, tomato (Solanum lycopersicum)

    Numerical study of the strongly screened vortex glass model in an external field

    Full text link
    The vortex glass model for a disordered high-T_c superconductor in an external magnetic field is studied in the strong screening limit. With exact ground state (i.e. T=0) calculations we show that 1) the ground state of the vortex configuration varies drastically with infinitesimal variations of the strength of the external field, 2) the minimum energy of global excitation loops of length scale L do not depend on the strength of the external field, however 3) the excitation loops themself depend sensibly on the field. From 2) we infer the absence of a true superconducting state at any finite temperature independent of the external field.Comment: 6 pages RevTeX, 5 eps-figures include

    Numerical Study of Spin and Chiral Order in a Two-Dimensional XY Spin Glass

    Full text link
    The two dimensional XY spin glass is studied numerically by a finite size scaling method at T=0 in the vortex representation which allows us to compute the exact (in principle) spin and chiral domain wall energies. We confirm earlier predictions that there is no glass phase at any finite T. Our results strongly support the conjecture that both spin and chiral order have the same correlation length exponent ν≈2.70\nu \approx 2.70. We obtain preliminary results in 3d.Comment: 4 pages, 2 figures, revte

    The Lower Critical Dimension of the XY Spin Glass

    Full text link
    We investigate the XY spin-glass model in two and three dimensions using the domain-wall renormalization-group method. The results for systems of linear sizes up to L=12 (2D) and L=8 (3D) strongly suggest that the lower critical dimension for spin-glass ordering may be dc≈3d_{c}\approx 3 rather than four as is commonly believed. Our 3D data favor the scenario of a low but finite spin-glass ordering temperature below the chiral transition but they are also compatible with the system being at or slightly below its lower critical dimension.Comment: 4 pages, 3 ps figures. Typos have been corrected, one reference has been added and the concluding paragraph has been expanded. To appear in Phys. Rev. Let

    Application of a minimum cost flow algorithm to the three-dimensional gauge glass model with screening

    Full text link
    We study the three-dimensional gauge glass model in the limit of strong screening by using a minimum cost flow algorithm, enabling us to obtain EXACT ground states for systems of linear size L<=48. By calculating the domain-wall energy, we obtain the stiffness exponent theta = -0.95+/-0.03, indicating the absence of a finite temperature phase transition, and the thermal exponent nu=1.05+/-0.03. We discuss the sensitivity of the ground state with respect to small perturbations of the disorder and determine the overlap length, which is characterized by the chaos exponent zeta=3.9+/-0.2, implying strong chaos.Comment: 4 pages RevTeX, 2 eps-figures include

    Numerical Study of Order in a Gauge Glass Model

    Full text link
    The XY model with quenched random phase shifts is studied by a T=0 finite size defect energy scaling method in 2d and 3d. The defect energy is defined by a change in the boundary conditions from those compatible with the true ground state configuration for a given realization of disorder. A numerical technique, which is exact in principle, is used to evaluate this energy and to estimate the stiffness exponent θ\theta. This method gives θ=−0.36±0.013\theta = -0.36\pm0.013 in 2d and θ=+0.31±0.015\theta = +0.31\pm 0.015 in 3d, which are considerably larger than previous estimates, strongly suggesting that the lower critical dimension is less than three. Some arguments in favor of these new estimates are given.Comment: 4 pages, 2 figures, revtex. Submitted to Phys. Rev. Let

    Dynamical Gauge Theory for the XY Gauge Glass Model

    Full text link
    Dynamical systems of the gauge glass are investigated by the method of the gauge transformation.Both stochastic and deterministic dynamics are treated. Several exact relations are derived among dynamical quantities such as equilibrium and nonequilibrium auto-correlation functions, relaxation functions of order parameter and internal energy. They provide physical properties in terms of dynamics in the SG phase, a possible mixed phase and the Griffiths phase, the multicritical dynamics and the aging phenomenon. We also have a plausible argument for the absence of re-entrant transition in two or higher dimensions.Comment: 3 figure

    Numerical studies of the two- and three-dimensional gauge glass at low temperature

    Full text link
    We present results from Monte Carlo simulations of the two- and three-dimensional gauge glass at low temperature using the parallel tempering Monte Carlo method. Our results in two dimensions strongly support the transition being at T_c=0. A finite-size scaling analysis, which works well only for the larger sizes and lower temperatures, gives the stiffness exponent theta = -0.39 +/- 0.03. In three dimensions we find theta = 0.27 +/- 0.01, compatible with recent results from domain wall renormalization group studies.Comment: 7 pages, 10 figures, submitted to PR
    • …
    corecore