132 research outputs found

    The Fe XXII I(11.92 A)/I(11.77 A) Density Diagnostic Applied to the Chandra High Energy Transmission Grating Spectrum of EX Hydrae

    Full text link
    Using the Livermore X-ray Spectral Synthesizer, which calculates spectral models of highly charged ions based primarily on HULLAC atomic data, we investigate the temperature, density, and photoexcitation dependence of the I(11.92 A)/I(11.77 A) line ratio of Fe XXII. We find that this line ratio has a critical density n_c \approx 5x10^13 cm^-3, is approximately 0.3 at low densities and 1.5 at high densities, and is very insensitive to temperature and photoexcitation, so is a useful density diagnostic for sources like magnetic cataclysmic variables in which the plasma densities are high and the efficacy of the He-like ion density diagnostic is compromised by the presence of a bright ultraviolet continuum. Applying this diagnostic to the Chandra High Energy Transmission Grating spectrum of the intermediate polar EX Hya, we find that the electron density of its T_e \approx 12 MK plasma is n_e = 1.0^{+2.0}_{-0.5} x 10^14 cm^-3, orders of magnitude greater than that typically observed in the Sun or other late-type stars.Comment: 11 pages including 3 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2003 April 3 for publication in The Astrophysical Journa

    Atomic X-Ray Spectra of Accretion Disk Atmospheres in the Kerr Metric

    Full text link
    We calculate the atmospheric structure of an accretion disk around a Kerr black hole and obtain its X-ray spectrum, which exhibits prominent atomic transitions under certain circumstances. The gravitational and Doppler (red)shifts of the C V, C VI, O VII, O VIII, and Fe I-XXVI emission lines are observable in active galaxies. We quantify the line emissivities as a function of radius, to identify the effects of atmospheric structure, and to determine the usefulness of these lines for probing the disk energetics. The line emissivities do not always scale linearly with the incident radiative energy, as in the case of Fe XXV and Fe XXVI. Our model incorporates photoionization and thermal balance for the plasma, the hydrostatic approximation perpendicular to the plane of the disk, and general relativistic tidal forces. We include radiative recombination rates, fluorescence yields, Compton scattering, and photoelectric opacities for the most abundant elements.Comment: 4 pages, 1 figure, to appear in the Proc. of the 10th Marcel Grossmann Meeting on General Relativity, World Scientific, Rio de Janeiro, July 20-26, 200

    Correlation of the Quasi-Periodic Oscillation Frequencies of White Dwarf, Neutron Star, and Black Hole Binaries

    Get PDF
    Using data obtained in 1994 June/July with the Extreme Ultraviolet Explorer deep survey photometer and in 2001 January with the Chandra X-ray Observatory Low Energy Transmission Grating Spectrograph, we investigate the extreme-ultraviolet (EUV) and soft X-ray oscillations of the dwarf nova SS Cyg in outburst. We find quasi-periodic oscillations (QPOs) at nu_0 ~ 0.012 Hz and nu_1 ~ 0.13 Hz in the EUV flux and at nu_0 ~ 0.0090 Hz, nu_1 ~ 0.11 Hz, and possibly nu_2 ~ nu_0 + nu_1 ~ 0.12 Hz in the soft X-ray flux. These data, combined with the optical data of Woudt & Warner for VW Hyi, extend the Psaltis, Belloni, & van der Klis nu_high-nu_low correlation for neutron star and black hole low-mass X-ray binaries (LMXBs) nearly two orders of magnitude in frequency, with nu_low ~ 0.08 nu_high. This correlation identifies the high-frequency quasi-coherent oscillations (so-called ``dwarf nova oscillations'') of cataclysmic variables (CVs) with the kilohertz QPOs of LMXBs, and the low-frequency QPOs of CVs with the horizontal branch oscillations (or the broad noise component identified as such) of LMXBs. Assuming that the same mechanisms produce the QPOs in white dwarf, neutron star, and black hole binaries, we find that the data exclude the relativistic precession model and the magnetospheric and sonic-point beat-frequency models (as well as any model requiring the presence or absence of a stellar surface or magnetic field); more promising are models that interpret QPOs as manifestations of disk accretion onto any low-magnetic field compact object.Comment: 15 pages including 4 encapsulated postscript figures; LaTeX format, uses aastex.cls; accepted on 2002 July 23 for publication in The Astrophysical Journa

    The X-ray transient XTE J1118+480: Multiwavelength observations of a low-state mini-outburst

    Get PDF
    We present multiwavelength observations of the newly discovered X-ray transient XTE J1118+480 obtained in the rising phase of the 2000 April outburst. This source is located at unusually high Galactic latitude and in a very low absorption line of sight. This made the first EUVE spectroscopy of an X-ray transient outburst possible. Together with our HST, RXTE, and UKIRT data this gives unprecedented spectral coverage. We find the source in the low hard state. The flat IR-UV spectrum appears to be a combination of optically thick disk emission and flat spectrum emission, possibly synchrotron, while at higher energies, including EUV, a typical low hard state power-law is seen. EUVE observations reveal no periodic modulation, suggesting an inclination low enough that no obscuration by the disk rim occurs. We discuss the nature of the source and this outburst and conclude that it may be more akin to mini-outbursts seen in GRO J0422+32 than to a normal X-ray transient outburst.Comment: 4 pages, 3 figures, replaced with accepted version. Uses emulateapj5.st
    • …
    corecore