2 research outputs found

    Algometry to measure pain threshold in the horse's back - An in vivo and in vitro study

    Get PDF
    Abstract Background The aim of this study was to provide information on algometric transmission of pressure through the dorsal thoracolumbar tissues of the equine back. Using a commercially available algometer, measurements were carried out with six different tips (hemispheric and cylindrical surfaces, contact areas 0.5 cm2, 1 cm2, and 2 cm2). In nine live horses the threshold of pressure that lead to any reaction was documented. In postmortem specimens of five euthanized horses the transmission of algometer pressure onto a pressure sensor placed underneath the dorsal thoracolumbar tissues at the level of the ribs or the transverse lumbar processes respectively was measured. Results Algometer tips with a contact area of 1 cm2 led to widely similar results irrespective of the surface shape; these measurements also had the lowest variance. Contact areas of 0.5 cm2 resulted in a lower pressure threshold, and those of 2 cm2 resulted in a higher pressure threshold. The hemispheric shape of the contact area resulted in a higher pressure threshold, than the cylindrical contact area. Compared to the thoracic region, a significantly higher pressure threshold was found in the lumbar region in the live horses. This result corresponds to the increased tissue thickness in the lumbar region compared to the thoracic region, also documented as less pressure transmission in the lumbar region on the in vitro specimens. Conclusions Algometry is an easily practicable and well tolerated method to quantify pain but it is important to consider the many factors influencing the results obtained

    Programmable Systems for Intelligence in Automobiles (PRYSTINE): Final results after Year 3

    No full text
    Autonomous driving is disrupting the automotive industry as we know it today. For this, fail-operational behavior is essential in the sense, plan, and act stages of the automation chain in order to handle safety-critical situations on its own, which currently is not reached with state-of-the-art approaches.The European ECSEL research project PRYSTINE realizes Fail-operational Urban Surround perceptION (FUSION) based on robust Radar and LiDAR sensor fusion and control functions in order to enable safe automated driving in urban and rural environments. This paper showcases some of the key exploitable results (e.g., novel Radar sensors, innovative embedded control and E/E architectures, pioneering sensor fusion approaches, AI-controlled vehicle demonstrators) achieved until its final year 3
    corecore