66 research outputs found

    Strain-Induced Magnetic Anisotropy in Epitaxial Thin Films of the Spinel CoCr2_2O4_4

    Get PDF
    We show that the magnetic anisotropy in spinel-structure CoCr2_2O4_4 thin films exhibits a strain dependence in which compressive strain induces an out-of-plane magnetic easy axis and tensile strain an in-plane easy axis, exactly opposite to the behavior reported for the related compound CoFe2_2O4_4. We use density functional theory calculations within the LSDA+U approximation to reproduce and explain the observed behavior. Using second-order perturbation theory, we analyse the anisotropy tensor of the Co2+^{2+} ions in both octahedral and tetrahedral coordination, allowing us to extend our results to spinels with general arrangements of Co2+^{2+} ions.Comment: 8 pages, 7 figure

    Magneto-ionic control of spin polarization in multiferroic tunnel junctions

    Get PDF
    Magnetic tunnel junctions (MTJs) with Hf0.5Zr0.5O2 barriers are reported to show both tunneling magnetoresistance effect (TMR) and tunneling electroresistance effect (TER), displaying four resistance states by magnetic and electric field switching. Here we show that, under electric field cycling of large enough magnitude, the TER can reach values as large as 10^6%. Moreover, concomitant with this TER enhancement, the devices develop electrical control of spin polarization, with sign reversal of the TMR effect. Currently, this intermediate state exists for a limited number of cycles and understanding the origin of these phenomena is key to improve its stability. The experiments presented here point to the magneto-ionic effect as the origin of the large TER and strong magneto-electric coupling, showing that ferroelectric polarization switching of the tunnel barrier is not the main contribution

    Operando observation of reversible oxygen migration and phase transitions in ferroelectric devices

    Get PDF
    Unconventional ferroelectricity, robust at reduced nanoscale sizes, exhibited by hafnia-based thin-films presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. Here, we investigate epitaxial Hf0.5Zr0.5O2 (HZO) capacitors, interfaced with oxygen conducting metals (La0.67Sr0.33MnO3, LSMO) as electrodes, using atomic resolution electron microscopy while in situ electrical biasing. By direct oxygen imaging, we observe reversible oxygen vacancy migration from the bottom to the top electrode through HZO and reveal associated reversible structural phase transitions in the epitaxial LSMO and HZO layers. We follow the phase transition pathways at the atomic scale and identify that these mechanisms are at play both in tunnel junctions and ferroelectric capacitors switched with sub-millisecond pulses. Our results unmistakably demonstrate that oxygen voltammetry and polarization switching are intertwined in these materials

    Domain fluctuations in a ferroelectric low-strain BaTiO3 thin film

    Get PDF
    A ferroelectric BaTiO3 thin film grown on a NdScO3 substrate was studied using x-ray photon correlation spectroscopy (XPCS) to characterize thermal fluctuations near the a/b to a/c domain structure transformation present in this low-strain material, which is absent in the bulk. XPCS studies provide a direct comparison of the role of domain fluctuations in first- and second-order phase transformations. The a/b to a/c domain transformation is accompanied by a decrease in fluctuation timescales, and an increase in intensity and correlation length. Surprisingly, domain fluctuations are observed up to 25 degrees C above the transformation, concomitant with the growth of a/c domains and coexistence of both domain types. After a small window of stability, as the Curie temperature is approached, a/c domain fluctuations are observed, albeit slower, potentially due to the structural transformation associated with the ferroelectric to paraelectric transformation. The observed time evolution and reconfiguration of domain patterns highlight the role played by phase coexistence and elastic boundary conditions in altering fluctuation timescales in ferroelectric thin films

    Reversible oxygen migration and phase transitions in hafnia-based ferroelectric devices

    Get PDF
    Unconventional ferroelectricity exhibited by hafnia-based thin films-robust at nanoscale sizes-presents tremendous opportunities in nanoelectronics. However, the exact nature of polarization switching remains controversial. We investigated a La0.67Sr0.33MnO3/Hf0.5Zr0.5O2 capacitor interfaced with various top electrodes while performing in situ electrical biasing using atomic-resolution microscopy with direct oxygen imaging as well as with synchrotron nanobeam diffraction. When the top electrode is oxygen reactive, we observe reversible oxygen vacancy migration with electrodes as the source and sink of oxygen and the dielectric layer acting as a fast conduit at millisecond time scales. With nonreactive top electrodes and at longer time scales (seconds), the dielectric layer also acts as an oxygen source and sink. Our results show that ferroelectricity in hafnia-based thin films is unmistakably intertwined with oxygen voltammetry
    • …
    corecore