41 research outputs found

    High Resolution Triple Axis X-Ray Diffraction Analysis of II-VI Semiconductor Crystals

    Get PDF
    The objective of this research program is to develop methods of structural analysis based on high resolution triple axis X-ray diffractometry (HRTXD) and to carry out detailed studies of defect distributions in crystals grown in both microgravity and ground-based environments. HRTXD represents a modification of the widely used double axis X-ray rocking curve method for the characterization of grown-in defects in nearly perfect crystals. In a double axis rocking curve experiment, the sample is illuminated by a monochromatic X-ray beam and the diffracted intensity is recorded by a fixed, wide-open detector. The intensity diffracted by the sample is then monitored as the sample is rotated through the Bragg reflection condition. The breadth of the peak, which is often reported as the full angular width at half the maximum intensity (FWHM), is used as an indicator of the amount of defects in the sample. This work has shown that high resolution triple axis X-ray diffraction is an effective tool for characterizing the defect structure in semiconductor crystals, particularly at high defect densities. Additionally, the technique is complimentary to X-ray topography for defect characterization in crystals

    Triple‐crystal x‐ray diffraction analysis of reactive ion etched gallium arsenide

    Get PDF
    This is the published version. Copyright 1994 American Institute of PhysicsThe effect of BCl3 reactive ion etching on the structural perfection of GaAs has been studied with diffuse x‐ray scattering measurementsconducted by high‐resolution triple‐crystal x‐ray diffraction. While using a symmetric 004 diffraction geometry revealed no discernible differences between etched and unetched samples, using the more surface‐sensitive and highly asymmetric 113 reflection revealed that the reactive ion etched samples etched displayed less diffusely scattered intensity than unetched samples, indicating a higher level of structural perfection. Increasing the reaction ion etch bias voltage was found to result in decreased diffuse scattering initially, until an apparent threshold voltage was reached, after which no further structural improvement was observed. Furthermore, we have shown that this reduction in process‐induced surfacestructural damage is not due merely to the removal of residual chemical‐mechanical polishing damage
    corecore