41 research outputs found

    Method of femtosecond libs for remote sensing of aerosol atmosphere

    Get PDF
    A feature of the propagation of high power femtosecond laser radiation in the atmosphere is self-focusing with further filamentation, which leads to the formation of plasma at some distance from the laser system. In the problem of sensing by femtosecond laser radiation, these features make it possible to implement the method of remote identification of an impurity substance contained in the form of a droplet or solid aerosol, and determination of its concentration, known in foreign literature as R-FS-LIBS (Remote Femtosecond Laser Induced Breakdown Spectroscopy) [1, 2, 3]. Work on controlling the position of the filamentation zone is carried out both abroad [4] and in Russia [5, 6]. The report presents the results of evaluating the angular distribution of emission from the breakdown region of the aerosol atmosphere by femtosecond pulses in the range from 6 to 180ΠΎ and the intensity of the emission line depending on the concentration of impurity for the problem of remote sensing by the method of laser induced breakdown

    Reconstruction of N2O and CH4 content by dial measurements at wavelengths of overtone CO laser

    Get PDF
    The paper presents the results of laboratory experiments on measurement of absorption and extinction of radiation of the overtone БО laser at wavelengths used for sensing of methane and N2O in the mid-IR spectral range with the differential absorption (DIAL) method, as well as the concentrations of the studied gases reconstructed from the analysis of experimentally obtained absorption coefficients

    Multiple filamentation of laser beams with different diameters in the air at a 100-meter path

    Get PDF
    Results of experiments on controlling the position and length of the filamentation zone of femtosecond laser pulses in atmospheric path length 110 m using different initial spatial focusing and defocusing. The obtained distribution of filaments along the filamentation zone, measured dependence the length of the filamentation zone of the numerical aperture of the beam, its initial radius and pulse power

    Multiple filamentation of laser beams with different diameters in the air at a 150-meter path

    Get PDF
    Results of experiments on controlling the position and length of the filamentation zone of femtosecond laser pulses in atmospheric path length 150 m using different initial spatial focusing and defocusing. The obtained distribution of filaments along the filamentation zone, measured dependence the length of the filamentation zone of the numerical aperture of the beam, its initial radius and pulse power

    Filamentation of terawatt laser pulses along hundred-meter atmospheric paths

    Get PDF
    Results of the experimental study of filamentation of terawatt femtosecond pulses of a Ti:Sapphire laser along an atmospheric path 106 m long using different spatial focusing and pulse power are presented. The control of filamentation region position and length by means of changing the initial laser beam focusing is shown to be highly effective. Dependencies are derived of filamentation region position and length on the initial degree of focusing, pulse power, and the number of filaments along the filamentation region. The obtained data on the filamentation region length and the number of filaments are compared with the results of our previous experiments and data from other authors

    Modeling of multiple filamentation of terawatt laser pulses on a hundred-meter air path

    Get PDF
    The results of numerical simulation of multiple filamentation of terawatt femtosecond pulse Ti:Sapphire laser performed on the experimental data obtained in the airway of a length of 106 m when changing the initial spatial focusing and laser power

    Localized high-intensity light structures during multiple filamentation of Ti:sapphire-laser femtosecond pulses along an air path

    Get PDF
    The results of experimental studies of the transverse structure of a laser beam after multiple filamentation are presented. A ring structure of radiation is formed around individual filaments in a beam cross section inside the multiple filamentation domain, and at a dozen meters from it a common ring structure starts forming surrounding postfilamentation light channels (PFC). It is shown that the spectra of the PFC, rings, and beam are significantly different. The ring spectrum broadens asymmetrically relative to the carrier wavelength and is mainly concentrated in the short wavelength region. The PFC spectrum has a significant and more symmetrical broadening and covers the range 630–1000 nm

    Filamentation of collimated Ti:sapphire-laser pulses in water

    Get PDF
    The results of experimental studies of the spatial characteristics of multiple filamentation terawatt femtosecond Ti:Salaser in water are presented. With an increase in initial power laser pulses increases the number of filaments, the length of the field is increased filamentation and reducing the length of the filaments have been shown. The distribution of the filaments in the longitudinal direction of the field of multiple filamentation has a maximum cross-sectional filament is shifted from the center to the periphery of the beam at the end region of filamentation. The minimum diameter of the beam on the track corresponds to the position of the maximum number of filaments. After the point of maximum impulse essentially loses energy in the initial direction of propagation. Upon reaching the pulse power 2 104 Pcr of multiple filamentation area is formed of a hollow cone, the apex directed to the radiation source

    Filamentation of focused and collimated laser beams in liquids

    Get PDF
    Experimental results of investigations into the transformation of the spectral and spatial characteristics of femtosecond collimated and focused Ti:Sapphire-laser beams with wavelengths of 800 and 400 nm upon filamentation in continuous liquid media are presented. It is shown that broadening of the laser pulse spectrum due to phase self-modulation in the medium with a cubic nonlinearity depends on the pulse power and beam diameter. Dependences of the number of filaments, width of laser radiation spectrum, nonlinear focusing distance, and diameter of the filamentation region on the laser pulse power are measured. The existence of a relative power interval in which the explosive growth of the number of filaments occurs, is established. Β© (2015) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only
    corecore