3 research outputs found

    Depth-based descriptor for matching keypoints in 3D scenes

    Get PDF
    Keypoint detection is a basic step in many computer vision algorithms aimed at recognition of objects, automatic navigation and analysis of biomedical images. Successful implementation of higher level image analysis tasks, however, is conditioned by reliable detection of characteristic image local regions termed keypoints. A large number of keypoint detection algorithms has been proposed and verified. In this paper we discuss the most important keypoint detection algorithms. The main part of this work is devoted to description of a keypoint detection algorithm we propose that incorporates depth information computed from stereovision cameras or other depth sensing devices. It is shown that filtering out keypoints that are context dependent, e.g. located at boundaries of objects can improve the matching performance of the keypoints which is the basis for object recognition tasks. This improvement is shown quantitatively by comparing the proposed algorithm to the widely accepted SIFT keypoint detector algorithm. Our study is motivated by a development of a system aimed at aiding the visually impaired in space perception and object identification

    Unbiased evaluation of keypoint detectors with respect to rotation invariance

    No full text
    The authors present the results of a comparative performance study of algorithms for detecting keypoints in digital images. The Harris, good features to track (GFTT), SIFT, SURF, FAST, ORB, BRISK, and the MSER keypoint detectors were tested using two types of images: POV‐Ray simulated images and photographs from the Caltech 256 image dataset. They tested the repeatability of detection of the image keypoints for the evaluated detectors for a series of images with one degree rotations from 0 to 180° (3982 images in total). In the evaluation scenario they adopted an original approach in which they did not hold back a single image to be the reference image. They conclude that the most computationally complex detector, i.e. the SIFT performs best under rotation transformation of images. However, the FAST and ORB detectors, while being less computationally demanding, perform almost equally well. Hence, they can be viable choices in image processing tasks for mobile applications

    Plasma Amino Acids May Improve Prediction Accuracy of Cerebral Vasospasm after Aneurysmal Subarachnoid Haemorrhage

    No full text
    Aneurysmal subarachnoid haemorrhages (aSAH) account for 5% of strokes and continues to place a great burden on patients and their families. Cerebral vasospasm (CVS) is one of the main causes of death after aSAH, and is usually diagnosed between day 3 and 14 after bleeding. Its pathogenesis remains poorly understood. To verify whether plasma concentration of amino acids have prognostic value in predicting CVS, we analysed data from 35 patients after aSAH (median age 55 years, IQR 39–62; 20 females, 57.1%), and 37 healthy volunteers (median age 50 years, IQR 38–56; 19 females, 51.4%). Fasting peripheral blood samples were collected on postoperative day one and seven. High performance liquid chromatography-mass spectrometry (HPLC-MS) analysis was performed. The results showed that plasma from patients after aSAH featured a distinctive amino acids concentration which was presented in both principal component analysis and direct comparison. No significant differences were noted between postoperative day one and seven. A total of 18 patients from the study group (51.4%) developed CVS. Hydroxyproline (AUC = 0.7042, 95%CI 0.5259–0.8826, p = 0.0248) and phenylalanine (AUC = 0.6944, 95%CI 0.5119–0.877, p = 0.0368) presented significant CVS prediction potential. Combining the Hunt-Hess Scale and plasma levels of hydroxyproline and phenylalanine provided the model with the best predictive performance and the lowest leave-one-out cross-validation of performance error. Our results suggest that plasma amino acids may improve sensitivity and specificity of Hunt-Hess scale in predicting CVS
    corecore