3 research outputs found

    Catalytic efficiency of activated carbon functionalized with phosphorus-containing groups in 2-propanol dehydration

    Get PDF
    The functionalization of activated carbon (AC) by P-containing groups was conducted, and their thermal desorption was studied. Depending on the used method, the functionalized AC contains 0.5–1.45 mmol/g of acidic groups acting in catalytic 2-propanol dehydration. All catalysts showed 100% conversion of 2-propanol to propylene. The catalytic activity does not change with time under isothermal conditions and during their repeated use in catalysis, for 3 cycles of heating-cooling. In fact, the yield of propylene remains stable; it does not decrease with each cycle. Preliminary oxidation with nitric acid causes a small increase in the catalytic activity

    Perspectives for usage of adsorption semiconductor sensors based on Pd/SnO

    No full text
    Nanosized semiconductor sensor materials based on SnO2 with different palladium contents were obtained via zol-gel technology with the use of ethylene glycol and hydrate of tin (VI) chloride as precursors. Morphology and phase composition of nanosized sensor materials were studied by X-ray diffraction and TEM methods. Catalytic activities of the Pd/SnO2 nanomaterials in the reaction of H2 and CO oxidation were investigated. Adsorption semiconductor sensors based on Pd/SnO2 nanomaterials were made by their calcination up to 620 0C in air and the sensors were found to be highly sensitive to presence of CO and CH4 in air ambient. Higher responses to CO of Pd-containing sensors in comparison with their responses to CH4 were confirmed by higher reaction activity of CO in catalytic oxidation reaction. Differences in sensitive properties of the sensors to methane and carbon monoxide were explained by features of the catalytic reactions of methane and carbon monoxide oxidation occurring on surfaces of the gas sensitive layers of the sensors

    Crystal structure of poly[bis(μ-2-bromopyrazine)tetra-μ2-cyanido-dicopper(I)iron(II)]: a bimetallic metal-organic framework

    No full text
    In the title metal-organic framework, [Fe(C4H3BrN2)2{Cu(CN)2}2]n, the FeII cation is located on an inversion center and has a slightly elongated octahedral coordination environment [FeN6], ligated by two pyrazine N atoms of symmetry-related bridging 2-bromopyrazine molecules in the axial positions and by four N atoms of pairs of symmetry-related cyanido groups in the equatorial positions. The CuI center has a fourfold coordination environment [CuC3N], with an almost perfect trigonal–pyramidal geometry, formed by three cyanido C atoms and an N atom of a bridging 2-bromopyrazine molecule. Copper(I) centers related by a twofold rotation axis are bridged by two carbon atoms from a pair of μ-CN groups, resulting in Cu2(CN)2 units. Each Cu2(CN)2 unit is linked to six FeII cations via a pair of linear CN units, the pair of μ-CN groups and two bridging 2-bromopyrazine ligands, resulting in the formation of a metal–organic framework, which is additionally stabilized by the short Cu...Cu contacts of 2.4450 (7) Å
    corecore