5 research outputs found

    Ethofumesate-resistant annual bluegrass (Poa annua) in grass seed production systems

    Get PDF
    The prolific seed production and polyploidy of annual bluegrass allow for the rapid development of herbicide resistance. Ethofumesate-resistant annual bluegrass plants were identified in the 1990s in grass seed production in Oregon, but their prevalence and distribution are not well documented. Therefore a dose–response experiment was initiated to determine the potential level of ethofumesate resistance in seed production systems. Seeds from 55 annual bluegrass populations were obtained from three sources: seed production fields (31 populations), the seed cleaning process (6 populations), and seed testing lots prior to retail distribution (18 populations). Additionally, two populations, one with known ethofumesate resistance and one with known susceptibility, were identified in preliminary testing and used as controls in this experiment. Seed from each collected population was increased. Individual seedlings were then transplanted into separate cone-tainers, grown to a size of 2 to 3 tillers in the greenhouse, and then sprayed using a compressed air track spray chamber with 10 doses of ethofumesate at 0, 0.56, 1.1, 2.8, 5.6, 8.4, 11.2, 16.8, 22.4, and 44.8 kg ai ha−1, with 0.84 to 2.2 kg ha−1 as the label application rate for perennial ryegrass. The resistant to susceptible ratio of populations across all sources ranged from 0.5 to 5.5. The most resistant populations found in production fields, seed cleaning, and seed testing lots had the effective dose necessary to kill 50% of the population (ED50) of 12.1, 9.4, and 13.1 kg ha−1, respectively. Furthermore, 68% of the populations found in production fields had ED50 higher than 6 kg ha−1, indicating common annual bluegrass resistance in grass seed production. As such, growers should implement integrated weed management strategies, as herbicides alone will likely be ineffective at controlling annual bluegrass

    Agricultural Research Service Weed Science Research: Past, Present, and Future

    Get PDF
    The U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS) has been a leader in weed science research covering topics ranging from the development and use of integrated weed management (IWM) tactics to basic mechanistic studies, including biotic resistance of desirable plant communities and herbicide resistance. ARS weed scientists have worked in agricultural and natural ecosystems, including agronomic and horticultural crops, pastures, forests, wild lands, aquatic habitats, wetlands, and riparian areas. Through strong partnerships with academia, state agencies, private industry, and numerous federal programs, ARS weed scientists have made contributions to discoveries in the newest fields of robotics and genetics, as well as the traditional and fundamental subjects of weed-crop competition and physiology and integration of weed control tactics and practices. Weed science at ARS is often overshadowed by other research topics; thus, few are aware of the long history of ARS weed science and its important contributions. This review is the result of a symposium held at the Weed Science Society of America\u27s 62nd Annual Meeting in 2022 that included 10 separate presentations in a virtual Weed Science Webinar Series. The overarching themes of management tactics (IWM, biological control, and automation), basic mechanisms (competition, invasive plant genetics, and herbicide resistance), and ecosystem impacts (invasive plant spread, climate change, conservation, and restoration) represent core ARS weed science research that is dynamic and efficacious and has been a significant component of the agency\u27s national and international efforts. This review highlights current studies and future directions that exemplify the science and collaborative relationships both within and outside ARS. Given the constraints of weeds and invasive plants on all aspects of food, feed, and fiber systems, there is an acknowledged need to face new challenges, including agriculture and natural resources sustainability, economic resilience and reliability, and societal health and well-being

    Carbon Sequestration in Turfgrass–Soil Systems

    No full text
    Plants are key components of the terrestrial ecosystem carbon cycle. Atmospheric CO2 is assimilated through photosynthesis and stored in plant biomass and in the soil. The use of turfgrass is expanding due to the increasing human population and urbanization. In this review, we summarize recent carbon sequestration research in turfgrass and compare turfgrass systems to other plant systems. The soil organic carbon (SOC) stored in turfgrass systems is comparable to that in other natural and agricultural systems. Turfgrass systems are generally carbon-neutral or carbon sinks, with the exception of intensively managed areas, such as golf course greens and athletic fields. Turfgrass used in other areas, such as golf course fairways and roughs, parks, and home lawns, has the potential to contribute to carbon sequestration if proper management practices are implemented. High management inputs can increase the biomass productivity of turfgrass but do not guarantee higher SOC compared to low management inputs. Additionally, choosing the appropriate turfgrass species that are well adapted to the local climate and tolerant to stresses can maximize CO2 assimilation and biomass productivity, although other factors, such as soil respiration, can considerably affect SOC. Future research is needed to document the complete carbon footprint, as well as to identify best management practices and appropriate turfgrass species to enhance carbon sequestration in turfgrass systems
    corecore