1,618 research outputs found

    Inhomogeneous Nuclear Spin Flips

    Full text link
    We discuss a feedback mechanism between electronic states in a double quantum dot and the underlying nuclear spin bath. We analyze two pumping cycles for which this feedback provides a force for the Overhauser fields of the two dots to either equilibrate or diverge. Which of these effects is favored depends on the g-factor and Overhauser coupling constant A of the material. The strength of the effect increases with A/V_x, where V_x is the exchange matrix element, and also increases as the external magnetic field B_{ext} decreases.Comment: 5 pages, 4 figures (jpg

    From Disordered Crystal to Glass: Exact Theory

    Full text link
    We calculate thermodynamic properties of a disordered model insulator, starting from the ideal simple-cubic lattice (g=0g = 0) and increasing the disorder parameter gg to ≫1/2\gg 1/2. As in earlier Einstein- and Debye- approximations, there is a phase transition at gc=1/2g_{c} = 1/2. For g<gcg<g_{c} the low-T heat-capacity C∼T3C \sim T^{3} whereas for g>gcg>g_{c}, C∼TC \sim T. The van Hove singularities disappear at {\em any finite gg}. For g>1/2g>1/2 we discover novel {\em fixed points} in the self-energy and spectral density of this model glass.Comment: Submitted to Phys. Rev. Lett., 8 pages, 4 figure

    Summing the Instanton Series in N=2 Superconformal Large-N QCD

    Full text link
    We consider the multi-instanton collective coordinate integration measure in N=2 supersymmetric SU(N) gauge theory with N_F fundamental hypermultiplets. In the large-N limit, at the superconformal point where N_F=2N and all VEVs are turned off, the k-instanton moduli space collapses to a single copy of AdS_5*S^1. The resulting k-instanton effective measure is proportional to N^{1/2} g^4 Z_k^(6), where Z_k^(6) is the partition function of N=(1,0) SYM theory in six dimensions reduced to zero dimensions. The multi-instanton can in fact be summed in closed form. As a hint of an AdS/CFT duality, with the usual relation between the gauge theory and string theory parameters, this precisely matches the normalization of the charge-k D-instanton measure in type IIB string theory compactified to six dimensions on K3 with a vanishing two-cycle.Comment: 12 pages, amslate

    Relationship between long time scales and the static free-energy in the Hopfield model

    Full text link
    The Glauber dynamics of the Hopfield model at low storage level is considered. We analytically derive the spectrum of relaxation times for large system sizes. The longest time scales are gathered in families, each family being in one to one correspondence with a stationary (not necessarily stable) point of the static mean-field free-energy. Inside a family, the time scales are given by the reciprocals (of the absolute values) of the eigenvalues of the free-energy Hessian matrix.Comment: 5 pages RevTex file, accepted for publication in J.Phys.

    Anomalous dynamics in two- and three- dimensional Heisenberg-Mattis spin glasses

    Full text link
    We investigate the spectral and localization properties of unmagnetized Heisenberg-Mattis spin glasses, in space dimensionalities d=2d=2 and 3, at T=0. We use numerical transfer-matrix methods combined with finite-size scaling to calculate Lyapunov exponents, and eigenvalue-counting theorems, coupled with Gaussian elimination algorithms, to evaluate densities of states. In d=2d=2 we find that all states are localized, with the localization length diverging as ω−1\omega^{-1}, as energy ω→0\omega \to 0. Logarithmic corrections to density of states behave in accordance with theoretical predictions. In d=3d=3 the density-of-states dependence on energy is the same as for spin waves in pure antiferromagnets, again in agreement with theoretical predictions, though the corresponding amplitudes differ.Comment: RevTeX4, 9 pages, 9 .eps figure

    A solvable model of a one-dimensional quantum gas with pair interaction

    Full text link
    We propose a solvable model of a one-dimensional harmonic oscillator quantum gas of two sorts of particles, fermions or bosons, which allows to describe the formation of pairs due to a suitable pair interaction. These pairs we call "pseudo-bosons" since the system can be approximated by an ideal bose gas for low temperatures. We illustrate this fact by considering the specific heat and the entropy function for N=8 pairs. The model can also be evaluated in the thermodynamic limit if the harmonic oscillator potential is suitable scaled

    A modified triplet-wave expansion method applied to the alternating Heisenberg chain

    Full text link
    An alternative triplet-wave expansion formalism for dimerized spin systems is presented, a modification of the 'bond operator' formalism of Sachdev and Bhatt. Projection operators are used to confine the system to the physical subspace, rather than constraint equations. The method is illustrated for the case of the alternating Heisenberg chain, and comparisons are made with the results of dimer series expansions and exact diagonalization. Some discussion is included of the phenomenon of 'quasiparticle breakdown', as it applies to the two-triplon bound states in this model.Comment: 16 pages, 12 figure

    Application of tridiagonalization to the many-body problem

    Get PDF
    Journal ArticleThe problem of a single magnetic, Wolff-model impurity in an otherwise ideal metallic host is investigated using the nonperturbative Lanczos method. Convergence is very rapid. The many-body ground-state energy is investigated and comparisons are made with Tomonaga operator theory and other weak-coupling schemes. We believe that this is the first application of tridiagonalization to the many-body problem

    Improved Landau-Ginzburg equation near surfaces of solids

    Get PDF
    Journal ArticleWe study the order parameter near the surface for an Ising model. Applications to the lattice gas, alloy problem, and ferromagnetism are noted. Away from Tc our equations differ from the Landau-Ginzburg results due to an additional nonlinear, term which can substantially affect the order parameter at low T. Our method also provides for a physically meaningful set of boundary conditions
    • …
    corecore