4 research outputs found
Invariant measures of the 2D Euler and Vlasov equations
We discuss invariant measures of partial differential equations such as the
2D Euler or Vlasov equations. For the 2D Euler equations, starting from the
Liouville theorem, valid for N-dimensional approximations of the dynamics, we
define the microcanonical measure as a limit measure where N goes to infinity.
When only the energy and enstrophy invariants are taken into account, we give
an explicit computation to prove the following result: the microcanonical
measure is actually a Young measure corresponding to the maximization of a
mean-field entropy. We explain why this result remains true for more general
microcanonical measures, when all the dynamical invariants are taken into
account. We give an explicit proof that these microcanonical measures are
invariant measures for the dynamics of the 2D Euler equations. We describe a
more general set of invariant measures, and discuss briefly their stability and
their consequence for the ergodicity of the 2D Euler equations. The extension
of these results to the Vlasov equations is also discussed, together with a
proof of the uniqueness of statistical equilibria, for Vlasov equations with
repulsive convex potentials. Even if we consider, in this paper, invariant
measures only for Hamiltonian equations, with no fluxes of conserved
quantities, we think this work is an important step towards the description of
non-equilibrium invariant measures with fluxes.Comment: 40 page
On the numerical approximation of the Perron-Frobenius and Koopman operator
Information about the behavior of dynamical systems can often be obtained by
analyzing the eigenvalues and corresponding eigenfunctions of linear operators
associated with a dynamical system. Examples of such operators are the
Perron-Frobenius and the Koopman operator. In this paper, we will review
different methods that have been developed over the last decades to compute
finite-dimensional approximations of these infinite-dimensional operators -
e.g. Ulam's method and Extended Dynamic Mode Decomposition (EDMD) - and
highlight the similarities and differences between these approaches. The
results will be illustrated using simple stochastic differential equations and
molecular dynamics examples
On forward and backward SPDEs with non-local boundary conditions
We study linear stochastic partial differential equations of parabolic type with non-local in time or mixed in time boundary conditions. The standard Cauchy condition at the terminal time is replaced by a condition that mixes the random values of the solution at different times, including the terminal time, initial time and continuously distributed times. For the case of backward equations, this setting covers almost surely periodicity. Uniqueness, solvability and regularity results for the solutions are obtained. Some possible applications to portfolio selection are discussed