136 research outputs found

    Water Quality as Affected by Pesticides in Rice Production

    Get PDF
    Studies were conducted to determine the environmental persistence of the rice pesticides triclopyr, 2,4-D, benomyl and quinclorac. Triclopyr half-lives ranged from \u3c7 d to \u3e100 d depending on depth within the soil profile and clay content. Triclopyr persistence increased as depth within the profile increased and clay content increased. The benomyl metabolite MBC was present at greater than 50% of the initial amount after 9 months in the field. In simulated carryover field studies quinclorac exhibited the greatest potential for injury to subsequent rotational crops. Cotton and soybean growth was reduced when planted at four weeks after quinclorac application. The adsorption of triclopyr to three soils was measured by the batch equilibrium technique. Freundlich isotherms were linear and resulted in Kf values of 1.60, 1.41, and 2.75 for Crowley silt loam soil from depths of 0, 0.2, and 0.6 m, respectively, within soil profile. Soil thin-layer chromatography of triclopyr resulted in Rf values of 0.42, 0.69, and 0.40 for the Crowley silt loam soil from 0, 0.2, and 0.6 m depths. In controlled temperature and water potential degradation studies, triclopyr and 2,4-D degraded more rapidly at 3 0 C than at 15 C. The degradation rates of the two herbicides responded oppositely to water potential. 2,4-D degraded more rapidly under anaerobic conditions, whereas triclopyr degraded more rapidly under aerobic conditions

    Competition for hydrogen bond formation in the helix-coil transition and protein folding

    Get PDF
    The problem of the helix-coil transition of biopolymers in explicit solvents, like water, with the ability for hydrogen bonding with solvent is addressed analytically using a suitably modified version of the Generalized Model of Polypeptide Chains. Besides the regular helix-coil transition, an additional coil-helix or reentrant transition is also found at lower temperatures. The reentrant transition arises due to competition between polymer-polymer and polymer-water hydrogen bonds. The balance between the two types of hydrogen bonding can be shifted to either direction through changes not only in temperature, but also by pressure, mechanical force, osmotic stress or other external influences. Both polypeptides and polynucleotides are considered within a unified formalism. Our approach provides an explanation of the experimental difficulty of observing the reentrant transition with pressure; and underscores the advantage of pulling experiments for studies of DNA. Results are discussed and compared with those reported in a number of recent publications with which a significant level of agreement is obtained.Comment: 21 pages, 3 figures, submitted to Phys Rev

    Calculation of the Phase Behavior of Lipids

    Full text link
    The self-assembly of monoacyl lipids in solution is studied employing a model in which the lipid's hydrocarbon tail is described within the Rotational Isomeric State framework and is attached to a simple hydrophilic head. Mean-field theory is employed, and the necessary partition function of a single lipid is obtained via a partial enumeration over a large sample of molecular conformations. The influence of the lipid architecture on the transition between the lamellar and inverted-hexagonal phases is calculated, and qualitative agreement with experiment is found.Comment: to appear in Phys.Rev.

    Single Honeybee Silk Protein Mimics Properties of Multi-Protein Silk

    Get PDF
    Honeybee silk is composed of four fibrous proteins that, unlike other silks, are readily synthesized at full-length and high yield. The four silk genes have been conserved for over 150 million years in all investigated bee, ant and hornet species, implying a distinct functional role for each protein. However, the amino acid composition and molecular architecture of the proteins are similar, suggesting functional redundancy. In this study we compare materials generated from a single honeybee silk protein to materials containing all four recombinant proteins or to natural honeybee silk. We analyse solution conformation by dynamic light scattering and circular dichroism, solid state structure by Fourier Transform Infrared spectroscopy and Raman spectroscopy, and fiber tensile properties by stress-strain analysis. The results demonstrate that fibers artificially generated from a single recombinant silk protein can reproduce the structural and mechanical properties of the natural silk. The importance of the four protein complex found in natural silk may lie in biological silk storage or hierarchical self-assembly. The finding that the functional properties of the mature material can be achieved with a single protein greatly simplifies the route to production for artificial honeybee silk

    Non-ionic Thermoresponsive Polymers in Water

    Full text link

    Simulation of the random scission of C-C bonds in the initial stage of the thermal degradation of polyethylene

    No full text
    We performed molecular dynamics simulations to analyze the initial stage of the thermal degradation of polyethylene, which is dominated by the random scission reaction. The simulations were initiated from structures that were taken from previously equilibrated snapshots of the amorphous polymer and of a free-standing thin film. Isolated chains were also used for comparison. Our systems were coupled to a thermal heat bath, and the effect of different coupling constants was studied. Rate of random scission increases as the strength of the temperature coupling increases. Rates of reaction are almost similar in thin films and the bulk, whereas the rates are much faster in isolated chains. Expansion of the free-standing thin film accompanies degradation, producing fragments of various sizes. Chains of higher molecular weights than the initial chains can be produced due to recombination of fragments during the expansion of thin films. The polydispersity index of the resulting fragments is higher in thin films compared to the bulk. The bonds at the low density portion of the thin films have a higher probability of being broken. (C) 2000 Elsevier Science Ltd. All rights reserved

    Rotational isomeric state models in macromolecular systems

    No full text
    • …
    corecore