18 research outputs found

    Presence of Mycobacterium bovis in slaughterhouses and risks for workers

    Get PDF
    An investigation was carried out to detect the presence of Mycobacterium bovis in slaughterhouses where intradermal tuberculin test positive cattle were slaughtered, and to evaluate the risk of contamination by M. bovis among exposed slaughterhouse workers. Swabs were taken from the carcasses of slaughtered animals showing autoptic signs of non-generalized forms of tuberculosis, thus authorized for free consumption. Swabs were also taken from the hands and clothes of the staff employed in the butchery production line. Environmental samplings were conducted on the slaughterhouse air using filters and air aspiration devices, and on water used to wash the carcasses after slaughter. Samples from the carcasses of healthy animals were also taken on a following slaughtering session. The swabs were analysed by means of Polymerase Chain Reaction for the detection of mycobacteria. M. bovis was detected on meats, on the hands of one worker, and in the washing water. The results obtained from this study confirm that workers are highly exposed to infection by zoonotic tuberculosis, and that cleaning procedures were ineffective in our setting

    Phylogenomic reconstruction and metabolic potential of the genus <i>aminobacter</i>

    No full text
    Bacteria belonging to the genus Aminobacter are metabolically versatile organisms thriving in both natural and anthropized terrestrial environments. To date, the taxonomy of this genus is poorly defined due to the unavailability of the genomic sequence of A. anthyllidis LMG 26462(T) and the presence of unclassified Aminobacter strains. Here, we determined the genome sequence of A. anthyllidis LMG 26462(T) and performed phylogenomic, average nucleotide identity and digital DNA-DNA hybridization analyses of 17 members of genus Aminobacter. Our results indicate that 16S rRNA-based phylogeny does not provide sufficient species-level discrimination, since most of the unclassified Aminobacter strains belong to valid Aminobacter species or are putative new species. Since some members of the genus Aminobacter can utilize certain C1 compounds, such as methylamines and methyl halides, a comparative genomic analysis was performed to characterize the genetic basis of some degradative/assimilative pathways in the whole genus. Our findings suggest that all Aminobacter species are heterotrophic methylotrophs able to generate the methylene tetrahydrofolate intermediate through multiple oxidative pathways of C1 compounds and convey it in the serine cycle. Moreover, all Aminobacter species carry genes implicated in the degradation of phosphonates via the C-P lyase pathway, whereas only A. anthyllidis LMG 26462(T) contains a symbiosis island implicated in nodulation and nitrogen fixation

    Geometrical-optics approach to increase the accuracy in LED-based photometers for point-of-care testing

    No full text
    A geometrical-optics approach is proposed to increase the accuracy in photometric measurements, using a point-of-care testing (POCT) LED-based sensor. Due to stray-light effects, the measurement accuracy depends on the dimension of the CMOS area, where the radiation is detected. We propose two image processing approaches and evaluate the influence of the sensor area. In addition, we demonstrate that with the same measurement, both absorption coefficient and refractive index can be determined, measuring the beam attenuation and the spot-size enlargement due to ray refraction

    Staphylococcus aureus clones causing osteomyelitis: a literature review (2000–2020)

    Get PDF
    ABSTRACT: Objectives: Staphylococcus aureus is the most common causative organism of osteomyelitis (OM). Nevertheless, the molecular epidemiology of S. aureus causing OM remains ill-defined. This study aimed to address the global epidemiology of S. aureus clones from OM patients. Methods: Literature databases were searched for studies reporting the molecular typing of S. aureus involved in OM published between 1 January 2000 and 29 July 2020. Data from 32 articles that fulfilled the inclusion criteria were analysed for year of publication, country of patients, methicillin susceptibility and genotypic characteristics of S. aureus isolates. Results: Pandemic clones CC5, CC8, CC22, CC30 and CC45 were the most common in OM. The distribution of clones differed greatly among studies owing to the local epidemiology of S. aureus and the MSSA heterogeneity. PVL-positive MRSA clones belonging to ST80/CC80 and ST8/CC8/USA300 were the most common among paediatric patients in Europe and the USA; greater variability was observed in the adult population. In Europe, MRSA belonged to PVL-negative CC5, CC8 and CC22 indicating a nosocomial origin of infections; in Asia PVL-positive ST59/CC59 MRSA was the most frequent. PVL-positive clones were often detected in haematogenous OM in children and adults. Although MSSA were polyclonal, PVL-negative ST398/CC398 MSSA was the most prevalent clone in diabetic foot OM. Conclusion: All major S. aureus clones circulating both in hospital and community settings appear to be capable of causing OM. Future studies reporting molecular typing and genomic data will provide more insights into the epidemiology and pathobiology of S. aureus clones causing OM

    Impact of the Gram-Negative-Selective Inhibitor MAC13243 on In Vitro Simulated Gut Microbiota

    No full text
    New Gram-negative-selective antimicrobials are desirable to avoid perturbations in the gut microbiota leading to antibiotic-induced dysbiosis. We investigated the impact of a prototype drug (MAC13243) interfering with the Gram-negative outer membrane protein LolA on the faecal microbiota. Faecal suspensions from two healthy human donors were exposed to MAC13243 (16, 32, or 64 mg/L) using an in vitro gut model (CoMiniGut). Samples collected 0, 4, and 8 h after exposure were subjected to viable cell counts, 16S rRNA gene quantification and V3-V4 sequencing using the Illumina MiSeq platform. MAC13243 exhibited concentration-dependent killing of coliforms in both donors after 8 h. Concentrations of &le;32 mg/L reduced the growth of aerobic bacteria without influencing the microbiota composition and diversity. An expansion of Firmicutes at the expense of Bacteroidetes and Actinobacteria was observed in the faecal microbiota from one donor following exposure to 64 mg/L of MAC13242. At all concentrations tested, MAC13243 did not lead to the proliferation of Escherichia coli nor a reduced abundance of beneficial bacteria, which are typical changes observed in antibiotic-induced dysbiosis. These results support our hypothesis that a drug interfering with a specific target in Gram-negative bacteria has a low impact on the commensal gut microbiota and, therefore, a low risk of inducing dysbiosis

    Effects of early postnatal gastric and colonic microbiota transplantation on piglet gut health

    No full text
    Abstract Background Diarrhea is a major cause of reduced growth and mortality in piglets during the suckling and weaning periods and poses a major threat to the global pig industry. Diarrhea and gut dysbiosis may in part be prevented via improved early postnatal microbial colonization of the gut. To secure better postnatal gut colonization, we hypothesized that transplantation of colonic or gastric content from healthy donors to newborn recipients would prevent diarrhea in the recipients in the post-weaning period. Our objective was to examine the impact of transplanting colonic or gastric content on health and growth parameters and paraclinical parameters in recipient single-housed piglets exposed to a weaning transition and challenged with enterotoxigenic Escherichia coli (ETEC). Methods Seventy-two 1-day-old piglets were randomized to four groups: colonic microbiota transplantation (CMT, n = 18), colonic content filtrate transplantation (CcFT, n = 18), gastric microbiota transplantation (GMT, n = 18), or saline (CON, n = 18). Inoculations were given on d 2 and 3 of life, and all piglets were milk-fed until weaning (d 20) and shortly after challenged with ETEC (d 24). We assessed growth, diarrhea prevalence, ETEC concentration, organ weight, blood parameters, small intestinal morphology and histology, gut mucosal function, and microbiota composition and diversity. Results Episodes of diarrhea were seen in all groups during both the milk- and the solid-feeding phase, possibly due to stress associated with single housing. However, CcFT showed lower diarrhea prevalence on d 27, 28, and 29 compared to CON (all P < 0.05). CcFT also showed a lower ETEC prevalence on d 27 (P < 0.05). CMT showed a higher alpha diversity and a difference in beta diversity compared to CON (P < 0.05). Growth and other paraclinical endpoints were similar across groups. Conclusion In conclusion, only CcFT reduced ETEC-related post-weaning diarrhea. However, the protective effect was marginal, suggesting that higher doses, more effective modalities of administration, longer treatment periods, and better donor quality should be explored by future research to optimize the protective effects of transplantation

    Bacterial topography of the upper and lower respiratory tract in pigs

    No full text
    Abstract Background Understanding the complex structures and interactions of the bacterial communities inhabiting the upper (URT) and lower (LRT) respiratory tract of pigs is at an early stage. The objective of this study was to characterize the bacterial topography of three URT (nostrils, choana, and tonsils) and LRT (proximal trachea, left caudal lobe and secondary bronchi) sites in pigs. Thirty-six post-mortem samples from six pigs were analysed by 16S rRNA gene quantification and sequencing, and the microbiota in nostrils and trachea was additionally profiled by shotgun sequencing. Results The bacterial composition obtained by the two methods was congruent, although metagenomics recovered only a fraction of the diversity (32 metagenome-assembled genomes) due to the high proportion (85–98%) of host DNA. The highest abundance of 16S rRNA copies was observed in nostrils, followed by tonsils, trachea, bronchi, choana and lung. Bacterial richness and diversity were lower in the LRT compared to the URT. Overall, Firmicutes and Proteobacteria were identified as predominant taxa in all sample types. Glasserella (15.7%), Streptococcus (14.6%) and Clostridium (10.1%) were the most abundant genera but differences in microbiota composition were observed between the two tracts as well as between sampling sites within the same tract. Clear-cut differences were observed between nasal and tonsillar microbiomes (R-values 0.85–0.93), whereas bacterial communities inhabiting trachea and lung were similar (R-values 0.10–0.17). Moraxella and Streptococcus were more common in bronchial mucosal scraping than in lavage, probably because of mucosal adherence. The bacterial microbiota of the choana was less diverse than that of the nostrils and similar to the tracheal microbiota (R-value 0.24), suggesting that the posterior nasal cavity serves as the primary source of bacteria for the LRT. Conclusion We provide new knowledge on microbiota composition and species abundance in distinct ecological niches of the pig respiratory tract. Our results shed light on the distribution of opportunistic bacterial pathogens across the respiratory tract and support the hypothesis that bacteria present in the lungs originate from the posterior nasal cavity. Due to the high abundance of host DNA, high-resolution profiling of the pig respiratory microbiota by shotgun sequencing requires methods for host DNA depletion

    In vitro and in vivo susceptibility to cefalexin and amoxicillin/clavulanate in canine low-level methicillin-resistant Staphylococcus pseudintermedius

    No full text
    Background Methicillin-resistant Staphylococcus pseudintermedius (MRSP) lineages harbouring staphylococcal cassette chromosome (SCC) mec types IV, V and psi SCCmec57395 usually display low oxacillin MICs (0.5-2 mg/L). Objectives To evaluate how oxacillin MICs correlate with PBP mutations and susceptibility to beta-lactams approved for veterinary use. Methods Associations between MICs and PBP mutations were investigated by broth microdilution, time-kill and genome sequence analyses in 117 canine MRSP strains harbouring these SCCmec types. Clinical outcome was retrospectively evaluated in 11 MRSP-infected dogs treated with beta-lactams. Results Low-level MRSP was defined by an oxacillin MIC = 4 mg/L) oxacillin MICs were associated with substitutions in native PBP2, PBP3, PBP4 and acquired PBP2a, one of which (V390M in PBP3) was statistically significant by multivariable modelling. Eight of 11 dogs responded to systemic therapy with first-generation cephalosporins (n = 4) or amoxicillin/clavulanate (n = 4) alone or with concurrent topical treatment, including 6 of 7 dogs infected with low-level MRSP. Conclusions Oxacillin MIC variability in MRSP is influenced by mutations in multiple PBPs and correlates with cefalexin susceptibility. The expert rule recommending that strains with oxacillin MIC >= 0.5 mg/L are reported as resistant to all beta-lactams should be reassessed based on these results, which are highly clinically relevant in light of the shortage of effective antimicrobials for systemic treatment of MRSP infections in veterinary medicine
    corecore