78 research outputs found

    Do the effects of cannabis on the hippocampus and striatum increase risk for psychosis?

    Get PDF
    Cannabis use is associated with increased risk of psychotic symptoms and in a small number of cases it can lead to psychoses. This review examines the neurobiological mechanisms that mediate the link between cannabis use and psychosis risk. We use an established preclinical model of psychosis, the methylazoxymethanol acetate (MAM) rodent model, as a framework to examine if psychosis risk in some cannabis users is mediated by the effects of cannabis on the hippocampus, and this region's role in the regulation of mesolimbic dopamine. We also examine how cannabis affects excitatory neurotransmission known to regulate hippocampal neural activity and output. Whilst there is clear evidence that cannabis/cannabinoids can affect hippocampal and medial temporal lobe function and structure, the evidence that cannabis/cannabinoids increase striatal dopamine function is less robust. There is limited evidence that cannabis use affects cortical and striatal glutamate levels, but there are currently too few studies to draw firm conclusions. Future work is needed to test the MAM model in relation to cannabis using multimodal neuroimaging approaches

    The neuropharmacology of cannabinoid receptor ligands in central signaling pathways

    Get PDF
    The endocannabinoid system is a complex neuronal system involved in a number of biological functions, like attention, anxiety, mood, memory, appetite, reward, and immune responses. It is at the centre of scientific interest, which is driven by therapeutic promise of certain cannabinoid ligands and the changing legalization of herbal cannabis in many countries. The endocannabinoid system is a modulatory system, with endocannabinoids as retrograde neurotransmitters rather than direct neurotransmitters. Neuropharmacology of cannabinoid ligands in the brain can therefore be understood in terms of their modulatory actions through other neurotransmitter systems. The CB1 receptor is chiefly responsible for effects of endocannabinoids and analogous ligands in the brain. An overview of the neuropharmacology of several cannabinoid receptor ligands, including endocannabinoids, herbal cannabis and synthetic cannabinoid receptor ligands is given in this review. Their mechanism of action at the endocannabinoid system is described, mainly in the brain. In addition, effects of cannabinoid ligands on other neurotransmitter systems will also be described, such as dopamine, serotonin, glutamate, noradrenaline, opioid, and GABA. In light of this, therapeutic potential and adverse effects of cannabinoid receptor ligands will also be discussed

    The Impact of Cannabidiol on Human Brain Function: A Systematic Review

    Get PDF
    Background: Accumulating evidence suggests that the non-intoxicating cannabinoid compound cannabidiol (CBD) may have antipsychotic and anxiolytic properties, and thus may be a promising new agent in the treatment of psychotic and anxiety disorders. However, the neurobiological substrates underlying the potential therapeutic effects of CBD are still unclear. The aim of this systematic review is to provide a detailed and up-to-date systematic literature overview of neuroimaging studies that investigated the acute impact of CBD on human brain function. Methods: Papers published until May 2020 were included from PubMed following a comprehensive search strategy and pre-determined set of criteria for article selection. We included studies that examined the effects of CBD on brain function of healthy volunteers and individuals diagnosed with a psychiatric disorder, comprising both the effects of CBD alone as well as in direct comparison to those induced by ∆9-tetrahydrocannabinol (THC), the main psychoactive component of Cannabis. Results: One-ninety four studies were identified, of which 17 met inclusion criteria. All studies investigated the acute effects of CBD on brain function during resting state or in the context of cognitive tasks. In healthy volunteers, acute CBD enhanced fronto-striatal resting state connectivity, both compared to placebo and THC. Furthermore, CBD modulated brain activity and had opposite effects when compared to THC following task-specific patterns during various cognitive paradigms, such as emotional processing (fronto-temporal), verbal memory (fronto-striatal), response inhibition (fronto-limbic-striatal), and auditory/visual processing (temporo-occipital). In individuals at clinical high risk for psychosis and patients with established psychosis, acute CBD showed intermediate brain activity compared to placebo and healthy controls during cognitive task performance. CBD modulated resting limbic activity in subjects with anxiety and metabolite levels in patients with autism spectrum disorders. Conclusion: Neuroimaging studies have shown that acute CBD induces significant alterations in brain activity and connectivity patterns during resting state and performance of cognitive tasks in both healthy volunteers and patients with a psychiatric disorder. This included modulation of functional networks relevant for psychiatric disorders, possibly reflecting CBD’s therapeutic effects. Future studies should consider replication of findings and enlarge the inclusion of psychiatric patients, combining longer-term CBD treatment with neuroimaging assessments

    Reduced resting state functional connectivity in the hippocampus-midbrain-striatum network of schizophrenia patients

    Get PDF
    Contemporary preclinical models suggest that abnormal functioning of a brain network consisting of the hippocampus, midbrain and striatum plays a critical role in the pathophysiology of schizophrenia. Previous neuroimaging studies examined individual aspects of this model in schizophrenia patients and individuals at clinical high risk for psychosis. However, this exact preclinical brain network has not been translated to human neuroimaging studies with schizophrenia patients and therefore it is currently unknown how functioning of this network is altered in patients. Here we investigated resting state functional connectivity in the hippocampus-midbrain-striatum network of schizophrenia patients, using functional Magnetic Resonance Imaging. Based on preclinical models, a network of functionally validated brain regions comprising the anterior subiculum (SUB), limbic striatum (LS), ventral tegmental area (VTA) and associative striatum (AS) was examined in 47 schizophrenia patients and 51 healthy controls. Schizophrenia patients demonstrated significantly lower functional connectivity in this hippocampus-midbrain-striatum network compared with healthy controls (p = 0.036). Particular reductions in connectivity were found between the SUB and LS (0.002 +/- 0.315 and 0.116 +/- 0.224, p = 0.040) and between the VTA and AS (0.230 +/- 0.268 and 0.356 +/- 0.285, p = 0.026). In patients, functional connectivity was not significantly associated with positive, negative or general symptom scores. Reduced connectivity is consistent with the concept of functional brain dysconnectivity as a key feature of the disorder. Our results support the notion that functioning of the hippocampus-midbrain-striatum network is significantly altered in the pathophysiology of schizophrenia

    Factors Moderating the Association Between Cannabis Use and Psychosis Risk: A Systematic Review

    Get PDF
    Increasing evidence indicates a relationship between cannabis use and psychosis risk. Specific factors, such as determinants of cannabis use or the genetic profile of cannabis users, appear to moderate this association. The present systematic review presents a detailed and up-to-date literature overview on factors that influence the relationship between cannabis use and psychosis risk. A systematic search was performed according to the PRISMA guidelines in MEDLINE and Embase, and 56 studies were included. The results show that, in particular, frequent cannabis use, especially daily use, and the consumption of high-potency cannabis are associated with a higher risk of developing psychosis. Moreover, several genotypes moderate the impact of cannabis use on psychosis risk, particularly those involved in the dopamine function, such as AKT1. Finally, cannabis use is associated with an earlier psychosis onset and increased risk of transition in individuals at a clinical high risk of psychosis. These findings indicate that changing cannabis use behavior could be a harm reduction strategy employed to lower the risk of developing psychosis. Future research should aim to further develop specific biomarkers and genetic profiles for psychosis, thereby contributing to the identification of individuals at the highest risk of developing a psychotic disorder

    Glutamate in schizophrenia: Neurodevelopmental perspectives and drug development

    Get PDF
    Research into the neurobiological processes that may lead to the onset of schizophrenia places growing emphasis on the glutamatergic system and brain development. Preclinical studies have shown that neurodevelopmental, genetic, and environmental factors contribute to glutamatergic dysfunction and schizophrenia-related phenotypes. Clinical research has suggested that altered brain glutamate levels may be present before the onset of psychosis and relate to outcome in those at clinical high risk. After psychosis onset, glutamate dysfunction may also relate to the degree of antipsychotic response and clinical outcome. These findings support ongoing efforts to develop pharmacological interventions that target the glutamate system and could suggest that glutamatergic compounds may be more effective in specific patient subgroups or illness stages. In this review, we consider the updated glutamate hypothesis of schizophrenia, from a neurodevelopmental perspective, by reviewing recent preclinical and clinical evidence, and discuss the potential implications for novel therapeutics

    A single dose of cannabidiol modulates medial temporal and striatal function during fear processing in people at clinical high risk for psychosis

    Get PDF
    Emotional dysregulation and anxiety are common in people at clinical high risk for psychosis (CHR) and are associated with altered neural responses to emotional stimuli in the striatum and medial temporal lobe. Using a randomised, double-blind, parallel-group design, 33 CHR patients were randomised to a single oral dose of CBD (600 mg) or placebo. Healthy controls (n = 19) were studied under identical conditions but did not receive any drug. Participants were scanned with functional magnetic resonance imaging (fMRI) during a fearful face-processing paradigm. Activation related to the CHR state and to the effects of CBD was examined using a region-of-interest approach. During fear processing, CHR participants receiving placebo (n = 15) showed greater activation than controls (n = 19) in the parahippocampal gyrus but less activation in the striatum. Within these regions, activation in the CHR group that received CBD (n = 15) was intermediate between that of the CHR placebo and control groups. These findings suggest that in CHR patients, CBD modulates brain function in regions implicated in psychosis risk and emotion processing. These findings are similar to those previously evident using a memory paradigm, suggesting that the effects of CBD on medial temporal and striatal function may be task independent

    Association of Hippocampal Glutamate Levels With Adverse Outcomes in Individuals at Clinical High Risk for Psychosis

    Get PDF
    Importance: Preclinical and human data suggest that hippocampal dysfunction plays a critical role in the onset of psychosis. Neural hyperactivity in the hippocampus is thought to drive an increase in subcortical dopamine function through glutamatergic projections to the striatum. Objective: To examine the association between hippocampal glutamate levels in individuals at clinical high risk for psychosis and their subsequent clinical outcomes. Design, Setting, and Participants: This cross-sectional study of 86 individuals at clinical high risk for psychosis and 30 healthy control individuals, with a mean follow-up of 18.5 months, was conducted between November 1, 2011, and November 1, 2017, at early detection services in London and Cambridge, United Kingdom. Main Outcomes and Measures: Concentrations of glutamate and other metabolites were measured in the left hippocampus using 3-T proton magnetic resonance spectroscopy at the first clinical presentation. At follow-up, clinical outcomes were assessed in terms of transition or nontransition to psychosis using the Comprehensive Assessment of the At-Risk Mental State criteria and the level of overall functioning using the Global Assessment of Function scale. Results: Of 116 total participants, 86 were at clinical high risk for psychosis (50 [58%] male; mean [SD] age, 22.4 [3.5] years) and 30 were healthy controls (14 [47%] male; mean [SD] age, 24.7 [3.8] years). At follow-up, 12 clinical high-risk individuals developed a first episode of psychosis whereas 74 clinical high-risk individuals did not; 19 clinical high-risk individuals showed good overall functioning (Global Assessment of Function ≥65), whereas 38 clinical high-risk individuals had a poor functional outcome (Global Assessment of Function <65). Compared with clinical high-risk individuals who did not become psychotic, clinical high-risk individuals who developed psychosis showed higher hippocampal glutamate levels (mean [SD], 8.33 [1.48] vs 9.16 [1.28] glutamate levels; P = .048). The clinical high-risk individuals who developed psychosis also had higher myo-inositol levels (mean [SD], 7.60 [1.23] vs 6.24 [1.36] myo-inositol levels; P = .002) and higher creatine levels (mean [SD], 8.18 [0.74] vs 7.32 [1.09] creatine levels; P = .01) compared with clinical high-risk individuals who did not become psychotic, and higher myo-inositol levels compared with healthy controls (mean [SD], 7.60 [1.23] vs 6.19 [1.51] myo-inositol levels; P = .005). Higher hippocampal glutamate levels in clinical high-risk individuals were also associated with a poor functional outcome (mean [SD], 8.83 [1.43] vs 7.76 [1.40] glutamate levels; P = .02). In the logistic regression analyses, hippocampal glutamate levels were significantly associated with clinical outcome in terms of transition and nontransition to psychosis (β = 0.48; odds ratio = 1.61; 95% CI, 1.00-2.59; P = .05) and overall functioning (β = 0.53; odds ratio = 1.71; 95% CI, 1.10-2.66; P = .02). Conclusions and Relevance: The findings indicate that adverse clinical outcomes in individuals at clinical high risk for psychosis may be associated with an increase in baseline hippocampal glutamate levels, as well as an increase in myo-inositol and creatine levels. This conclusion suggests that these measures could contribute to the stratification of clinical high-risk individuals according to future clinical outcomes

    Altered Relationship between Cortisol Response to Social Stress and Mediotemporal Function during Fear Processing in People at Clinical High Risk for Psychosis: A Preliminary Report

    Get PDF
    Evidence suggests that people at Clinical High Risk for Psychosis (CHR) have a blunted cortisol response to stress and altered mediotemporal activation during fear processing, which may be neuroendocrine–neuronal signatures of maladaptive threat responses. However, whether these facets are associated with each other and how this relationship is affected by cannabidiol treatment is unknown. We examined the relationship between cortisol response to social stress and mediotemporal function during fear processing in healthy people and in CHR patients. In exploratory analyses, we investigated whether treatment with cannabidiol in CHR individuals could normalise any putative alterations in cortisol-mediotemporal coupling. 33 CHR patients were randomised to 600 mg cannabidiol or placebo treatment. Healthy controls (n = 19) did not receive any drug. Mediotemporal function was assessed using a fearful face-processing functional magnetic resonance imaging paradigm. Serum cortisol and anxiety were measured immediately following the Trier Social Stress Test. The relationship between cortisol and mediotemporal blood-oxygen-level-dependent haemodynamic response was investigated using linear regression. In healthy controls, there was a significant negative relationship between cortisol and parahippocampal activation (p = 0.023), such that the higher the cortisol levels induced by social stress, the lower the parahippocampal activation (greater deactivation) during fear processing. This relationship differed significantly between the control and placebo groups (p = 0.033), but not between the placebo and cannabidiol groups (p = 0.67). Our preliminary findings suggest that the parahippocampal response to fear processing may be associated with the neuroendocrine (cortisol) response to experimentally induced social stress, and that this relationship may be altered in patients at clinical high risk for psychosis.</p
    • …
    corecore