

	Revised version: PSY18-0236 1	
1	Cannabidiol normalises medial temporal, midbrain and striatal dysfunction in people at clinical high-	Formatted: Numbering: Continuous
2	risk for psychosis	
3		
4 5 6 7 8 9	Sagnik Bhattacharyya ^{1*} , MBBS, MD, PhD; Robin Wilson ^{1**} , MBBS, MRCPsych; Elizabeth Appiah-Kusi ^{1**} , MSc; Aisling O'Neill ^{1**} , MSc; Michael Brammer ² , PhD; Jesus Perez ³ , MBBS, MD, PhD; Robin Murray ¹ , DSc, FRCPsych, FRS; Paul Allen ^{1,4} , PhD; Matthijs Bossong ^{1,5} , PhD; Philip McGuire ¹ , MD, PhD, FRCPsych.	
10	London, London SE5 8AF, UK	
11	² Department of Neuroimaging, Centre for Neuroimaging Sciences, PO Box 089, King's College London,	
12	Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, UK	
13	³ CAMEO Early Intervention services, Cambridgeshire and Peterborough NHS Foundation trust	
14	⁴ Department of Psychology, University of Roehampton, London, UK	
15	⁵ Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, The Netherlands	
16	** These authors contributed equally to this work	
17		
18 19	* Corresponding Author: Dr Sagnik Bhattacharyya	
20	Department of Psychosis Studies & Psychosis Clinical Academic Group	
21	King's College London, Institute of Psychiatry	
22	6 th Floor, Main Building, PO Box 067, De Crespigny Park, London, SE5 8AF	
23	Tel: +44 20 78480955; Fax: +44 20 78480976;	
24	E-mail: sagnik.2.bhattacharyya@kcl.ac.uk	
25		
26	Number of figures: 2; Number of tables: 3	
27	Supplementary Material: Supplementary Methods (eMethods), supplementary Results (eResults), 2	
28	supplementary figures and 2 supplementary tables and 2 supplementary Discussion sections (eDiscussion)	
29	Word Count:	
30	Abstract: 350 words	
31	Text: 3000 words	

32	KEY POINTS:
33	Question: What are the neurocognitive mechanisms that underlie the putative therapeutic effects of
34	cannabidiol in psychosis?
35	Findings: We show that a single oral dose of cannabidiol modulated activation in the striatum, medial
36	temporal cortex and midbrain in clinical high-risk (CHR) patients, such that in each of these regions, the level
37	of activation following administration of cannabidiol to CHR patients was intermediate between that in healthy
38	controls and in CHR patients under placebo.
39	Meaning: These results suggest that cannabidiol may normalize dysfunction in these brain regions,
40	which are critically implicated in psychosis. This may underlie its therapeutic effects in psychosis.
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

61	ABSTR	ACT:

- 62
- Importance: Cannabidiol (CBD) has antipsychotic effects in humans, but how these are mediated in the brain
 remains unclear.
- 65 **Objective:** To investigate the neurocognitive mechanisms that underlie the therapeutic effects of CBD in
- 66 psychosis.
- 67 **Design:** Parallel-group, double-blind, randomized, placebo-controlled design in people at clinical high risk
- 68 (CHR) for psychosis. Healthy control (HC) participants were studied under identical conditions without any
- 69 drug treatment.
- 70 Setting: Academic Health Science Centre, UK
- 71 Participants: Thirty-three medication-naïve CHR and 19 HC participants.
- 72 Intervention: CHRs received a single oral dose of either 600mg of CBD (CHR-CBD) or a placebo (CHR-
- 73 PLB). HCs were not given any drug. All participants were then studied using functional magnetic resonance
- 74 imaging (fMRI) whilst performing a verbal learning task.
- 75 Main Outcomes and Measures: Brain activation during verbal encoding and recall, indexed using the blood-
- 76 oxygen level-dependent haemodynamic response (BOLD) fMRI signal.
- 77 **Results:** Seventeen CHR-PLB [mean (SD) age= 25.35 (5.24) years; 10 females] and 16 CHR-CBD
- 78 [mean (SD) age= 22.43 (4.95) years; 6 females] were compared with 19 HC [mean (SD) age= 23.89 (4.14)
- 79 years; 8 females] participants. Brain activation (indexed using median sum of squares ratio of the BOLD
- 80 effects model component to residual sum of squares) was analyzed from 16 CHR-PLB, 15 CHR-CBD and 19
- 81 HC. CHR-PLB had reduced activation relative to HC in the right caudate during encoding (CHR-PLB:
- 82 median=-0.027, IQR= -0.041, -0.016; HC: median=0.020, IQR= -0.022, 0.056; p<0.001), and in the
- 83 parahippocampal gyrus and midbrain during recall (CHR-PLB: median=0.002, IQR= -0.016, 0.010; HC:
- 84 median=0.035, IQR= 0.015, 0.039; p=0.000096). Within these three regions, activation in the CHR-CBD was
- 85 greater than in CHR-PLB, but lower than in HCs (parahippocampal gyrus/ midbrain- CHR-PLB: median=-
- 86 0.007, IQR= -0.019, 0.008; CHR-CBD: median= -0.013, IQR= -0.027, 0.002; HC: median= 0.034, IQR= 0.005,
- 87 0.059; p<0.005): the level of activation was thus intermediate to that in the other two groups. There were no
- 88 significant group differences in task performance.

	Revised version: PSY18-0236	4
89	Conclusions and relevance: CBD may partially normalize alterations in parahippocampal, striatal and	
90	midbrain function associated with the CHR state. As they are critical to the pathophysiology of psychosis, the	
91	influence of CBD at these sites could underlie its therapeutic effects on psychotic symptoms.	
92		
93		
94		
95		
96		
97		
98		
99		
100		
101		
102		
103		
104		
105		
106		
107		
108		
109		
110		
111		
112		
113		
114		
115		
116		
117		

5

118 Introduction

119

120	Epidemiological and clinical studies have implicated regular cannabis use as a risk factor for the development ¹
121	of psychosis, and for poor clinical outcomes after its onset ²⁻⁴ . Psychosis is also associated with alterations in
122	the endocannabinoid system (reviewed here ^{5,6}), independent of exposure to cannabis. The endocannabinoid
123	system thus represents a potential therapeutic target for psychosis ^{7,8} . Its main central receptor, the CB1
124	cannabinoid receptor is ubiquitous in brain ^{9,10} and modulates the function of neurotransmitters, thought to be
125	critically perturbed in psychosis, including dopamine and glutamate ¹¹ . The constituent of cannabis responsible
126	for its acute psychotomimetic effects ¹²⁻¹⁴ and its association with the development and relapse of psychosis is
127	delta-9-tetrahydrocannabinol (THC) ^{1-4,15,16} . In contrast, Cannabidiol (CBD), one of the major non-psychoactive
128	constituents of cannabis, has broadly opposite neural and behavioural effects ¹⁷⁻²³ . In particular, we have shown
129	that CBD has opposing effects to THC on activation in the striatum ^{17,18} during verbal memory and salience
130	processing, on amygdala responses ¹⁷ during emotional processing, and on the functional connectivity ¹⁹ of these
131	regions. Furthermore, pre-treatment with CBD blocks the experimental induction of psychotic symptoms by
132	THC ^{17,20} , and clinical studies indicate that CBD has antipsychotic and anxiolytic properties in patients with
133	mental disorders (^{24,25} also reviewed in ^{7,8}). CBD was non-inferior to antipsychotic medication in a 4-week
134	clinical trial in first-episode psychosis ²⁶ , and improved psychotic symptoms when used as an adjunct to
135	antipsychotic medicaton in a 6-week trial in patients with chronic psychosis ²⁷ .
136	

137 Although there is good evidence that CBD can have beneficial effects on psychotic symptoms, how these effects are mediated in the brain remains unclear. The present study sought to address this issue by examining 138 139 the effects of CBD in individuals at clinical high-risk for psychosis (CHR). CHR subjects typically experience 140 clinically significant psychotic symptoms that are qualitatively similar to those seen in patients with frank psychosis²⁸, and are associated with high levels of distress²⁹. Contemporary preclinical models propose that 141 142 psychosis involves a perturbation of activity in the medial temporal lobe (MTL) that drives subcortical 143 dopamine dysfunction through projections to the striatum and midbrain³⁰. Moreover neuroimaging studies in 144 CHR subjects indicate that the later onset of psychosis is linked to alterations in parahippocampal structure³¹ and function³²⁻³⁴ and to elevated striatal and midbrain dopamine activity. 145

6

146 In the present study, on the basis of previous studies, we expected that CHR subjects would display altered 147 responses in the MTL, midbrain and striatum relative to HC. Our main hypothesis was that CBD would attenuate functional abnormalities in this triad of regions. While the MTL is critical for new learning³⁵, the 148 midbrain³⁶⁻³⁹ and striatum³⁹⁻⁴³ also play a key role in supporting the encoding and updating of contextual 149 150 information in memory. Therefore, we employed the verbal paired associate learning task (VPA), which engages these processes and brain regions^{13,14}. Furthermore, transient psychotomimetic effects of THC have 151 been related to its modulation of striatal¹³ and midbrain¹⁴ function and CBD¹⁷ has been shown to oppose these 152 153 striatal effects of THC during this task. 154 155 **METHODS** 156 Detailed methods are included as part of supplementary material (see eMethods and Figure S1A for 157 CONSORT diagram). Thirty-three antipsychotic medication-naïve CHR participants²⁸ were recruited from 158 early intervention services in the UK. Nineteen age-matched (± 3 years) healthy controls (HC) were recruited 159 by local advertisement. All participants provided written informed consent. Individuals with history of 160 previous psychotic or manic episode, neurological disorder or current DSM-IV diagnosis of substance 161 dependence, IQ less than 70 and contraindication to MRI or treatment with CBD were excluded.

162 Psychopathology was measured using Comprehensive Assessment of At-Risk Mental States (CAARMS;

163 positive and negative symptoms)²⁸ and state-trait anxiety inventory- state subscale (STAI-S)⁴⁴ at baseline

164 before drug administration. Two CHR participants were excluded, one from each of the CBD-treatment and

165 placebo-treatment arms, after failing to correctly perform the imaging task, resulting in n=15 participants in the

166 CHR-CBD group and n=16 in the CHR-PLB group.

167

168 Using a parallel-group, double-blind, placebo-controlled design, CHR participants were

169 randomized to either CBD (CHR-CBD) or placebo (CHR-PLB) treatment and received a single oral dose of

170 600mg of CBD (THC-Pharm), a dose previously effective in established psychosis²⁶, or an identical placebo

- 171 capsule respectively. Three hours after taking the CBD or placebo capsule, participants underwent functional
- 172 magnetic resonance imaging (fMRI) whilst performing a VPA task that we have previously used in
- 173 conjunction with fMRI and pharmacological challenge^{13,14}, including CBD administration¹⁷ (see eMethods for

7

174	justification of CBD dose and time of fMRI scanning, and Figure S1B for CBD plasma levels). HC
175	participants were investigated under identical conditions, but did not receive any study drug.
176	All participants were asked to have refrained from cannabis for 96 hours, alcohol for a minimum of 24 and
177	nicotine for 6 hours before scanning and any other recreational drugs for two weeks before the study day. A
178	urine sample prior to scanning was used to screen for use of illicit drugs.
179	
180	The VPA task (described in detail in eMethods) comprised 3 conditions (encoding, recall, and baseline), with
181	stimuli presented visually in blocks and accuracy of responses recorded online. During encoding, participants
182	were shown word-pairs and asked to say 'yes' or 'no' aloud after each pair to indicate whether they went well
183	together. The same word pairs were presented in the encoding condition 4 times, so that the associations could
184	be learned over repeated blocks. During recall, one of the words from previously presented pairs was shown
185	and participants were asked to say the word that it had previously been associated with. Subjects said "pass" in
186	they could not recall the missing word. During baseline, participants viewed a pair of blank blue rectangles of
187	identical dimensions as in the encoding/ recall condition.
188	
189	For each participant, the blood oxygen level-dependent haemodynamic (BOLD) response of the brain during
190	each encoding and recall block, measured using a 3T MRI scanner (gradient echo sequence axially; 39 x 3mm

slices, 3.3mm slice gap; 30ms echo time; compressed acquisition with a 2s repetition time and 3s silence), wascontrasted with that during the baseline condition.

193

Analysis | fMRI data were analyzed with software developed at the Institute of Psychiatry, Psychology and
Neuroscience (XBAM, version 4.1), using a nonparametric approach to minimize assumptions

196 (https://www.kcl.ac.uk/ioppn/depts/neuroimaging/research/imaginganalysis/Software/XBAM.aspx)^{45,46}.

197 Images were corrected for motion⁴⁷, spatially smoothed and the experimental design was convolved with two 198 gamma-variate functions to model the BOLD response. Using the constrained BOLD effects model, a best fit 199 between the weighted sum of these convolutions and the change over time at each voxel was computed⁴⁸. 200 Following least-squares fitting of this model to the time series at each voxel, a sum of squares (SSQ) ratio 201 statistic (ratio of the model component to residual sum of squares) was estimated for the encoding and recall

8

202	conditions relative to baseline. Significance of the estimated SSQ values at each voxel was determined by
203	permutation tesing ^{49,50} . SSQ ratio maps for each individual were transformed into standard stereotactic
204	space ^{51,45} and group activation maps were computed for each group in each drug condition by determining the
205	median SSQ ratio at each voxel (over all individuals) in the observed and permuted data maps. Group
206	activation maps for each condition were compared against each other (CHR-PLB vs HC and CHR-CBD vs
207	CHR-PLB) using non-parametric repeated-measure analysis of variance (ANOVA) ⁴⁵ . The voxel-wise
208	statistical threshold was set at p=0.05 and the cluster-wise thresholds were adjusted to ensure that the number
209	of false positive clusters per brain would be <1 (regions that survived this critical statistical threshold and the
210	corresponding p values are reported).
211	
211	The BOLD response in each subject was modelled using only trials associated with correct responses in the
212	recall condition. To test the hypothesis that activation in the CHR-CBD group would be intermediate between
213	that of HC and CHR-PLB subjects we examined whether a linear relationship in brain activation (CHR-PLB $>$
214	CHR-CBD > HC or CHR-PLB < CHR-CBD < HC) existed within the whole brain.
215	
216	Recall performance was analysed using repeated-measures analysis of variance. Correlational analysis between
217	recall score and brain activation was conducted using Pearson's test (two-tailed).
218	
219	RESULTS
220	There were no significant group differences between the CHR-PLB and HC and CHR-PLB and CHR-CBD
221	groups in demographic and clinical variables, except that the CHR-PLB group had fewer years of education
222	than the HC group (Table 1).
223	
224	fMRI results
225	Main effects of encoding and recall in healthy controls
226	
227	
227	In HC, relative to the baseline condition, the encoding condition was associated with activation in the left
227	In HC, relative to the baseline condition, the encoding condition was associated with activation in the left anterior cingulate cortex, the right caudate, the left precentral gyrus, and the cuneus (eTable 1). The recall

230	transverse temporal gyri, and decreased activation in the left middle occipital, the right lingual and inferior
231	frontal gyri (eTable 2).
232	
233	
234	Differences in activation associated with the CHR state (CHR-PLB vs HC)
235	
236	Encoding During the encoding condition, CHR-PLB participants showed greater activation than HC in the
237	right middle frontal gyrus and adjacent parts of the inferior frontal gyrus and insula; the left insula/ claustrum
238	and adjacent inferior frontal gyrus and putamen; the right precentral gyrus and adjacent postcentral gryus and
239	inferior parietal lobule; and the left cerebellum and adjacent lingual gyrus (Table 1, Figure 1A). Relative to
240	CHR-PLB, HC showed greater activation in the right subcallosal gyrus/ caudate head; the left anterior
241	cingulate; the right caudate tail extending to the posterior cingulate cortex; and in the right precuneus and
242	cuneus (Table 2A, Figure 1A).
243	
244	Recall / During the recall condition, the CHR-PLB participants showed greater activation than HC in clusters
245	encompassing the right inferior frontal, middle frontal and precentral gyri, and insula; the right cuneus,
246	fusiform, lingual gyri and posterior cingulate gyri; and the left cerebellum and middle occipital and fusiform
247	gyri (Table 2B, Figure 1B). HC showed greater activation in four clusters in the left hemisphere: these
248	involved the parahippocampal gyrus, midbrain, cerebellum and thalamus; superior temporal and middle
249	temporal gyri; superior and transverse temporal gyri; and middle frontal gyrus (Table 2B, Figure 1B).
250	
251	Effect of CBD on activation in CHR participants (CHR-PLB vs CHR-CBD)
252	
253	Encoding During the encoding condition, the CHR-PLB group showed greater activation than the CHR-CBD
254	group in a cluster in the left parahippocampal gyrus that extended into the superior temporal gyrus and
254 255	group in a cluster in the left parahippocampal gyrus that extended into the superior temporal gyrus and cerebellum, but less activation in the precentral gyri (Table3A, Figure 1C).

258	to the cingulate gyrus; and in the medial frontal gyrus (Table 3A, Figure 1D). There were no clusters of greater
259	activation in the CHR-PLB than the CHR-CBD group.
260	
261	
262	
263	Between-group linear analysis
264	
265	This analysis identified clusters where there was a linear pattern of activation across the 3 groups, such that
266	activation in the CHR-CBD group was intermediate to that in the CHR-PLB and HC groups.
267	
268	Encoding There were 7 clusters where encoding-related engagement was greatest in the CHR-PLB group,
269	lowest in the HC group, and at an intermediate level in the CHR-CBD group. These involved the right inferior
270	frontal and middle frontal gyri and insula; left insula and putamen; 3 clusters in the precentral gyri; right
271	fusiform gyrus and adjacent cerebellum; left cerebellum and fusiform gyrus (Table 3B, Figure 2A-B; Also see
272	supplementary figure S2A displaying all regions). The right inferior frontal gyrus, left insula and precentral
273	clusters overlapped with the regions where the CHR-PLB showed increased activation during encoding
274	relative to the HC group in the earlier paired comparison.
275	
276	There were 4 clusters where there was a linear between-group relationship in the opposite direction (CHR-
277	PLB< CHR-CBD <hc). and="" anterior="" caudate="" cingulate="" cortex;="" head="" involved="" left="" putamen="" right<="" td="" the="" these=""></hc).>
278	subcallosal gyrus and caudate head; tail of the right caudate and adjacent posterior cingulate cortex; and the
279	precuneus and right cuneus. In these clusters, activation during encoding was greatest in the HC group, lowest
280	in the CHR-PLB group, and at an intermediate level in the CHR-CBD group (Table 3B, Figure 2A-B; Also see
281	supplementary figure S1A displaying all regions). All 4 clusters overlapped with clusters where HC had shown
282	greater activation than the CHR-PLB group during encoding in the previous paired comparison.
283	
284	Recall / In 3 clusters, recall-related engagement was greatest in the CHR-PLB participants, and lowest in HC,
285	and at an intermediate level in the CHR-CBD participants. These clusters comprised the right inferior frontal
286	gyrus extending to ipsilateral middle frontal gyrus and insula; precuneus extending to cuneus, lingual, middle

287	occipital and fusiform gyri and cerebellum on the right side; and cerebellum extending to fusiform, lingual and
288	inferior occipital gyri on the left side (Table 3C, Figure 2C-D; Also see supplementary figure S2B displaying
289	all regions). All 3 clusters overlapped with clusters where the CHR-PLB had shown greater activation than HC
290	during recall in the paired comparison.

292	Conversely, there were 4 clusters where activitation was greatest in the HC group, lowest in the CHR-PLB
293	group and at an intermediate level in the CHR-CBD participants. These included the left parahippocampal
294	gyrus, midbrain and cerebellum; left thalamus; the left transverse temporal gyrus extending to superior
295	temporal gyrus; and the left precentral and cingulate gyri and caudate body (Table 3C, Figure 2C-D; Also see
296	supplementary figure S2B displaying all regions). The left parahippocampal gyrus and transverse temporal
297	gyrus clusters overlapped with clusters where HC had shown greater activation than CHR-PLB participants
298	during recall in the paired group comparison.
299	
300	Relationship between recall performance and brain activation:
301	Across all participants, total recall score was directly correlated (r=0.28, p=0.046) with the level of left
302	parahippocampal activation during recall. See eResults for exploratory analyses examining relationship
303	between brain activation and symptoms.
304	
205	DISCUSSION

- 305 DISCUSSION
- As expected and in line with data from previous neuroimaging comparisons of CHR subjects and
 controls⁵²⁻⁵⁴, we found that under placebo conditions, CHR participants showed differential
 activation relative to controls in several regions. These regions of differential response included the
 three areas thought to be critical to the pathophysiology of the CHR state, the striatum (during
- 310 verbal encoding), and the MTL and midbrain (during verbal recall).
- 311
- 312 To test our main hypothesis, we identified regions where there was a linear pattern of activation
- 313 across the three subject groups, such that the level of activation in CHR subjects given CBD was
- 314 intermediate to that in the CHR-placebo and control groups. We found that this pattern of
- 315 differential activation was evident in the striatum during encoding, and in the parahippocampal

316 cortex and midbrain during recall. Moreover, these regions of differential activation overlapped with 317 the areas where CHR participants under placebo conditions had shown altered activation in the 318 paired comparison with the controls. These findings suggest that during verbal encoding, the 319 administration of a single dose of CBD attenuated the reduction in the striatal response that evident 320 in CHR participants relative to controls under placebo conditions. Similarly, administration of CBD 321 appeared to attenuate the reduction in the parahippocampal and midbrain responses during verbal 322 recall that was seen in CHR participants under placebo conditions relative to controls. Although this 323 interpretation is cautious because the findings are based on cross-sectional as opposed to within-324 subject comparisons, these data suggest that in these regions, CBD may partially normalise 325 responses to verbal encoding and recall in CHR subjects. As there were no significant differences in 326 memory performance, this differential activation was not attributable to differential task 327 performance. 328 329 Acute effects of CBD on responses in these areas in CHR participants are consistent with previous 330 data from two studies that used a single dose of CBD in healthy volunteers. These studies indicated that in controls, CBD augmented parahippocampal and striatal activation^{17,18} during the same 331 332 learning task¹⁷ as used in the present study and had a similar effect on parahippocampal and striatal 333 responses during an attentional salience task¹⁸. In both of these studies, the administration of a single 334 dose of THC induced transient psychotic symptoms, and the effect of THC on parahippocampal and

335 striatal activation was the opposite to that of CBD.

336

337 Preclinical models suggest that overactivity in the MTL region drives subcortical dopamine dysfunction through projections to the striatum and midbrain^{55,56}. Moreover, neuroimaging studies in 338 339 CHR subjects indicate that the subsequent onset of psychosis is linked to alterations in MTL 340 structure³¹ and function^{32,34}, and to elevated striatal and midbrain dopamine function⁵⁷⁻⁵⁹. Effects of 341 CBD on parahippocampal, striatal and midbrain function in CHR participants are thus of particular 342 interest as these areas may play a critical role in the pathophysiology of psychosis³⁰. A partial 343 normalization of dysfunction in these regions could contribute to the therapeutic effects of CBD that have been reported in patients with psychosis^{26,27} and anxiety disorders²⁵. 344

346	The molecular mechanism of action that may underlie the effects of CBD in CHR patients is
347	unclear. CBD has effects on a number of signaling pathways ^{11,60,61} , including on the CB1 receptors
348	^{62,63} and may modulate glutamatergic neurotransmission particularly in the hippocampus through
349	multiple pathways ⁶⁴⁻⁶⁶ and striatal glutamatergic and CB1 receptor expression ⁶⁷ . In patients with
350	psychosis, the effects of CBD on psychotic symptoms have been related to its influence on levels of
351	the endogeneous cannabinoid anandamide ²⁶ . Future studies therefore need to investigate the
352	neurochemical and receptor level mechanisms that may underlie the antipsychotic effects of CBD.
353	
354	Across all participants, the level of activation in the left parahippocampal cortex during verbal recall
355	was directly correlated with total recall score during the task, consistent with the key role of this
356	region in relational memory binding and retrieval ^{68,69} and in supporting association-based recall ⁷⁰ .
357	Attenuated parahippocampal engagement in CHR-PLB is consistent with meta-analytic and
358	independent evidence from studies in patients with established psychotic disorders such as
359	schizophrenia ⁷¹⁻⁷³ and in studies in those at clinical ^{34,74} and familial/ genetic ^{73,75} risk of psychosis.
360	Further discussion of the results is presented as supplementary material (see eDiscussion 1).
361	
362	Limitations
363	Our results need to be considered in light of certain caveats including related to study design (see
364	eDiscussion 2).
365	
366	Conclusions
367	This study suggests that a single dose of CBD in an experimental setting may partially normalise
368	dysfunction in the MTL, striatum and midbrain in subjects at CHR for psychosis. It would be useful
369	to now investigate whether similar modulatory effects are evident in patients who have received a
370	course of treatment with CBD in a clinical setting.
371	
372	

3	7	4
-	'	•

375 **REFERENCES:**

- Moore TH, Zammit S, Lingford-Hughes A, et al. Cannabis use and risk of psychotic or affective mental health outcomes: a systematic review. *Lancet.* 2007;370(9584):319-328.
- Schoeler T, Monk A, Sami MB, et al. Continued versus discontinued cannabis use in patients with psychosis: a systematic review and meta-analysis. *The lancet Psychiatry.* 2016;3(3):215-225.
- Schoeler T, Petros N, Di Forti M, et al. Effects of continuation, frequency, and type of
 cannabis use on relapse in the first 2 years after onset of psychosis: an observational
 study. *The lancet Psychiatry*. 2016;3(10):947-953.
- Schoeler T, Petros N, Di Forti M, et al. Association Between Continued Cannabis Use and Risk of Relapse in First-Episode Psychosis: A Quasi-Experimental Investigation Within an Observational Study. *JAMA Psychiatry*. 2016;73(11):1173-1179.
- Appiah-Kusi E, Leyden E, Parmar S, Mondelli V, McGuire P, Bhattacharyya S.
 Abnormalities in neuroendocrine stress response in psychosis: the role of endocannabinoids. *Psychol Med.* 2016;46(1):27-45.
- Ranganathan M, Cortes-Briones J, Radhakrishnan R, et al. Reduced Brain Cannabinoid
 Receptor Availability in Schizophrenia. *Biol Psychiatry*. 2016;79(12):997-1005.
- 393 7. Leweke FM, Mueller JK, Lange B, Rohleder C. Therapeutic Potential of Cannabinoids in
 394 Psychosis. *Biol Psychiatry*. 2016;79(7):604-612.
- 395 8. Zuardi AW. Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of
 396 action. *Rev Bras Psiquiatr.* 2008;30(3):271-280.
- 397 9. Eggan SM, Lewis DA. Immunocytochemical distribution of the cannabinoid CB1 receptor
 398 in the primate neocortex: a regional and laminar analysis. *Cereb Cortex.* 2007;17(1):175399 191.
- 400 10. Glass M, Dragunow M, Faull RL. Cannabinoid receptors in the human brain: a detailed
 401 anatomical and quantitative autoradiographic study in the fetal, neonatal and adult
 402 human brain. *Neuroscience*. 1997;77(2):299-318.
- 403 11. Pertwee RG. The diverse CB1 and CB2 receptor pharmacology of three plant
 404 cannabinoids: delta9-tetrahydrocannabinol, cannabidiol and delta9405 tetrahydrocannabivarin. *Br J Pharmacol.* 2008;153(2):199-215.
- 406 12. D'Souza DC, Perry E, MacDougall L, et al. The psychotomimetic effects of intravenous
 407 delta-9-tetrahydrocannabinol in healthy individuals: implications for psychosis.
 408 *Neuropsychopharmacology.* 2004;29(8):1558-1572.
- 409 13. Bhattacharyya S, Fusar-Poli P, Borgwardt S, et al. Modulation of mediotemporal and
 410 ventrostriatal function in humans by Delta9-tetrahydrocannabinol: a neural basis for the
 411 effects of Cannabis sativa on learning and psychosis. *Arch Gen Psychiatry.*412 2009;66(4):442-451.
- 413 14. Bhattacharyya S, Atakan Z, Martin-Santos R, et al. Preliminary report of biological basis
 414 of sensitivity to the effects of cannabis on psychosis: AKT1 and DAT1 genotype
 415 modulates the effects of delta-9-tetrahydrocannabinol on midbrain and striatal function.
 416 *Mol Psychiatry.* 2012;17(12):1152-1155.
- 417 15. D'Souza DC, Abi-Saab WM, Madonick S, et al. Delta-9-tetrahydrocannabinol effects in
 418 schizophrenia: implications for cognition, psychosis, and addiction. *Biol Psychiatry.*419 2005;57(6):594-608.
- 420 16. D'Souza DC, Sewell RA, Ranganathan M. Cannabis and psychosis/schizophrenia: human
 421 studies. *Eur Arch Psychiatry Clin Neurosci.* 2009;259(7):413-431.

- 422 17. Bhattacharyya S, Morrison PD, Fusar-Poli P, et al. Opposite effects of delta-9423 tetrahydrocannabinol and cannabidiol on human brain function and psychopathology.
 424 *Neuropsychopharmacology.* 2010;35(3):764-774.
- Bhattacharyya S, Crippa JA, Allen P, et al. Induction of psychosis by Delta9tetrahydrocannabinol reflects modulation of prefrontal and striatal function during
 attentional salience processing. *Arch Gen Psychiatry*. 2012;69(1):27-36.
- 428 19. Bhattacharyya S, Falkenberg I, Martin-Santos R, et al. Cannabinoid modulation of
 429 functional connectivity within regions processing attentional salience.
 430 *Neuropsychopharmacology.* 2015;40(6):1343-1352.
- 431 20. Englund A, Morrison PD, Nottage J, et al. Cannabidiol inhibits THC-elicited paranoid
 432 symptoms and hippocampal-dependent memory impairment. *J Psychopharmacol.*433 2013;27(1):19-27.
- 434 21. Hindocha C, Freeman TP, Schafer G, et al. Acute effects of delta-9-tetrahydrocannabinol,
 435 cannabidiol and their combination on facial emotion recognition: a randomised, double436 blind, placebo-controlled study in cannabis users. *Eur Neuropsychopharmacol.*437 2015;25(3):325-334.
- 438 22. Morgan CJ, Curran HV. Effects of cannabidiol on schizophrenia-like symptoms in people
 439 who use cannabis. *Br J Psychiatry.* 2008;192(4):306-307.
- 440 23. Morgan CJ, Schafer G, Freeman TP, Curran HV. Impact of cannabidiol on the acute
 441 memory and psychotomimetic effects of smoked cannabis: naturalistic study:
 442 naturalistic study [corrected]. *Br J Psychiatry*. 2010;197(4):285-290.
- 443 24. Bergamaschi MM, Queiroz RH, Chagas MH, et al. Cannabidiol reduces the anxiety induced
 444 by simulated public speaking in treatment-naive social phobia patients.
 445 *Neuropsychopharmacology.* 2011;36(6):1219-1226.
- 446 25. Crippa JA, Derenusson GN, Ferrari TB, et al. Neural basis of anxiolytic effects of
 447 cannabidiol (CBD) in generalized social anxiety disorder: a preliminary report. J
 448 Psychopharmacol. 2011;25(1):121-130.
- 449 26. Leweke FM, Piomelli D, Pahlisch F, et al. Cannabidiol enhances anandamide signaling and
 450 alleviates psychotic symptoms of schizophrenia. *Transl Psychiatry.* 2012;2:e94.
- 451 27. McGuire P, Robson P, Cubala W, et al. Cannabidiol (CBD) as an adjunctive therapy in
 452 schizophrenia: a multicentre randomized controlled trial. *American Journal of Psychiatry.*453 2017.
- 454 28. Yung AR, Yuen HP, McGorry PD, et al. Mapping the onset of psychosis: the
 455 Comprehensive Assessment of At-Risk Mental States. *Aust N Z J Psychiatry*. 2005;39(11456 12):964-971.
- Falkenberg I, Valmaggia L, Byrnes M, et al. Why are help-seeking subjects at ultra-high
 risk for psychosis help-seeking? *Psychiatry research*. 2015;228(3):808-815.
- 459 30. Modinos G, Allen P, Grace AA, McGuire P. Translating the MAM model of psychosis to
 460 humans. *Trends Neurosci.* 2015;38(3):129-138.
- 461 31. Mechelli A, Riecher-Rossler A, Meisenzahl EM, et al. Neuroanatomical abnormalities that
 462 predate the onset of psychosis: a multicenter study. *Arch Gen Psychiatry.*463 2011;68(5):489-495.
- 464 32. Allen P, Azis M, Modinos G, et al. Increased Resting Hippocampal and Basal Ganglia
 465 Perfusion in People at Ultra High Risk for Psychosis: Replication in a Second Cohort.
 466 Schizophr Bull. 2017.
- 467 33. Allen P, Chaddock CA, Egerton A, et al. Resting Hyperperfusion of the Hippocampus,
 468 Midbrain, and Basal Ganglia in People at High Risk for Psychosis. *Am J Psychiatry.*469 2016;173(4):392-399.
- 470 34. Allen P, Chaddock CA, Howes OD, et al. Abnormal relationship between medial temporal
 471 lobe and subcortical dopamine function in people with an ultra high risk for psychosis.
 472 Schizophr Bull. 2012;38(5):1040-1049.

474		systems. Proc Natl Acad Sci U S A. 1996;93(24):13515-13522.
475	36.	D'Ardenne K, Eshel N, Luka J, Lenartowicz A, Nystrom LE, Cohen JD. Role of prefrontal
476		cortex and the midbrain dopamine system in working memory updating. <i>Proc Natl Acad</i>
477		<i>Sci U S A.</i> 2012;109(49):19900-19909.
478	37.	Schott BH, Seidenbecher CI, Fenker DB, et al. The dopaminergic midbrain participates in
479	-	human episodic memory formation: evidence from genetic imaging. J Neurosci.
480		2006;26(5):1407-1417.
481	38.	Schott BH, Sellner DB, Lauer CJ, et al. Activation of midbrain structures by associative
482		novelty and the formation of explicit memory in humans. <i>Learn Mem.</i> 2004;11(4):383-
483		387.
484	39.	Murty VP, Sambataro F, Radulescu E, et al. Selective updating of working memory
485		content modulates meso-cortico-striatal activity. <i>NeuroImage</i> . 2011;57(3):1264-1272.
486	40.	Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Striatal contributions to working
487	101	memory: a functional magnetic resonance imaging study in humans. <i>Eur J Neurosci.</i>
488		2004;19(3):755-760.
489	41.	Dahlin E, Neely AS, Larsson A, Backman L, Nyberg L. Transfer of learning after updating
490		training mediated by the striatum. <i>Science</i> . 2008;320(5882):1510-1512.
491	42.	McNab F, Klingberg T. Prefrontal cortex and basal ganglia control access to working
492		memory. <i>Nat Neurosci.</i> 2008;11(1):103-107.
493	43.	Landau SM, Lal R, O'Neil JP, Baker S, Jagust WJ. Striatal dopamine and working memory.
494		<i>Cereb Cortex.</i> 2009;19(2):445-454.
495	44.	Spielberger CD. Manual for the state/trait anxiety inventory (form Y) : (self evaluation
496		questionnaire). Palo Alto: Consulting Psychologists Press; 1983.
497	45.	Brammer MJ, Bullmore ET, Simmons A, et al. Generic brain activation mapping in
498		functional magnetic resonance imaging: a nonparametric approach. <i>Magnetic resonance</i>
499		imaging. 1997;15(7):763-770.
500	46.	Thirion B, Pinel P, Meriaux S, Roche A, Dehaene S, Poline JB. Analysis of a large fMRI
501		cohort: Statistical and methodological issues for group analyses. <i>NeuroImage</i> .
502		2007;35(1):105-120.
503	47.	Bullmore ET, Brammer MJ, Rabe-Hesketh S, et al. Methods for diagnosis and treatment of
504		stimulus-correlated motion in generic brain activation studies using fMRI. <i>Human brain</i>
505		mapping. 1999;7(1):38-48.
506	48.	Friman O, Borga M, Lundberg P, Knutsson H. Adaptive analysis of fMRI data.
507		NeuroImage. 2003;19(3):837-845.
508	49.	Bullmore E, Long C, Suckling J, et al. Colored noise and computational inference in
509		neurophysiological (fMRI) time series analysis: resampling methods in time and wavelet
510		domains. <i>Human brain mapping</i> . 2001;12(2):61-78.
511	50.	Bullmore ET, Suckling J, Overmeyer S, Rabe-Hesketh S, Taylor E, Brammer MJ. Global,
512		voxel, and cluster tests, by theory and permutation, for a difference between two groups
513		of structural MR images of the brain. IEEE transactions on medical imaging.
514		1999;18(1):32-42.
515	51.	Talairach J, Tournoux P. [Co-planar Stereotaxic Atlas of the Human Brain.]. New York:
516		Thieme Medical 1988.
517	52.	Dutt A, Tseng HH, Fonville L, et al. Exploring neural dysfunction in 'clinical high risk' for
518		psychosis: a quantitative review of fMRI studies. <i>J Psychiatr Res.</i> 2015;61:122-134.
519	53.	Gifford G, Crossley N, Fusar-Poli P, et al. Using neuroimaging to help predict the onset of
520	_	psychosis. <i>NeuroImage</i> . 2017;145(Pt B):209-217.
521	54.	Hager BM, Keshavan MS. Neuroimaging Biomarkers for Psychosis. Curr Behav Neurosci
522		<i>Rep.</i> 2015;2015:1-10.
523	55.	Grace AA. Dysregulation of the dopamine system in the pathophysiology of
524		schizophrenia and depression. <i>Nat Rev Neurosci.</i> 2016;17(8):524-532.

Squire LR, Zola SM. Structure and function of declarative and nondeclarative memory

35.

525	56.	Lodge DJ, Grace AA. Aberrant hippocampal activity underlies the dopamine
526		dysregulation in an animal model of schizophrenia. J Neurosci. 2007;27(42):11424-
527		11430.
528	57.	Allen P, Luigjes J, Howes OD, et al. Transition to psychosis associated with prefrontal and
529		subcortical dysfunction in ultra high-risk individuals. <i>Schizophr Bull.</i> 2012;38(6):1268-
530		1276.
531	58.	Howes O, Bose S, Turkheimer F, et al. Progressive increase in striatal dopamine synthesis
532		capacity as patients develop psychosis: a PET study. Mol Psychiatry. 2011;16(9):885-
533		886.
534	59.	Howes OD, Bose SK, Turkheimer F, et al. Dopamine synthesis capacity before onset of
535		psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry.
536		2011;168(12):1311-1317.
537	60.	Katona I. Cannabis and Endocannabinoid Signaling in Epilepsy. Handb Exp Pharmacol.
538		2015;231:285-316.
539	61.	Iseger TA, Bossong MG. A systematic review of the antipsychotic properties of
540		cannabidiol in humans. Schizophr Res. 2015;162(1-3):153-161.
541	62.	Bisogno T, Hanus L, De Petrocellis L, et al. Molecular targets for cannabidiol and its
542		synthetic analogues: effect on vanilloid VR1 receptors and on the cellular uptake and
543		enzymatic hydrolysis of anandamide. Br J Pharmacol. 2001;134(4):845-852.
544	63.	Thomas A, Baillie GL, Phillips AM, Razdan RK, Ross RA, Pertwee RG. Cannabidiol displays
545		unexpectedly high potency as an antagonist of CB1 and CB2 receptor agonists in vitro. Br
546		J Pharmacol. 2007;150(5):613-623.
547	64.	Sylantyev S, Jensen TP, Ross RA, Rusakov DA. Cannabinoid- and
548		lysophosphatidylinositol-sensitive receptor GPR55 boosts neurotransmitter release at
549		central synapses. Proc Natl Acad Sci U S A. 2013;110(13):5193-5198.
550	65.	Ledgerwood CJ, Greenwood SM, Brett RR, Pratt JA, Bushell TJ. Cannabidiol inhibits
551		synaptic transmission in rat hippocampal cultures and slices via multiple receptor
552		pathways. Br J Pharmacol. 2011;162(1):286-294.
553	66.	Linge R, Jimenez-Sanchez L, Campa L, et al. Cannabidiol induces rapid-acting
554		antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission:
555		role of 5-HT1A receptors. <i>Neuropharmacology</i> . 2016;103:16-26.
556	67.	Ren Y, Whittard J, Higuera-Matas A, Morris CV, Hurd YL. Cannabidiol, a nonpsychotropic
557		component of cannabis, inhibits cue-induced heroin seeking and normalizes discrete
558		mesolimbic neuronal disturbances. J Neurosci. 2009;29(47):14764-14769.
559	68.	Eichenbaum H, Yonelinas AP, Ranganath C. The medial temporal lobe and recognition
560		memory. Annu Rev Neurosci. 2007;30:123-152.
561	69.	Wang WC, Yonelinas AP, Ranganath C. Dissociable neural correlates of item and context
562		retrieval in the medial temporal lobes. <i>Behav Brain Res.</i> 2013;254:102-107.
563	70.	Yonelinas AP, Hopfinger JB, Buonocore MH, Kroll NE, Baynes K. Hippocampal,
564		parahippocampal and occipital-temporal contributions to associative and item
565		recognition memory: an fMRI study. <i>Neuroreport.</i> 2001;12(2):359-363.
566	71.	Cirillo MA, Seidman LJ. Verbal declarative memory dysfunction in schizophrenia: from
567		clinical assessment to genetics and brain mechanisms. Neuropsychol Rev. 2003;13(2):43-
568		77.
569	72.	Lepage M, Montoya A, Pelletier M, Achim AM, Menear M, Lal S. Associative memory
570		encoding and recognition in schizophrenia: an event-related fMRI study. <i>Biol Psychiatry</i> .
571		2006;60(11):1215-1223.
572	73.	Rasetti R, Mattay VS, White MG, et al. Altered hippocampal-parahippocampal function
573		during stimulus encoding: a potential indicator of genetic liability for schizophrenia.
574		JAMA Psychiatry. 2014;71(3):236-247.

575 576	74.	Valli I, Stone J, Mechelli A, et al. Altered medial temporal activation related to local glutamate levels in subjects with prodromal signs of psychosis. <i>Biol Psychiatry.</i>
577 578 579 580 581	75.	2011;69(1):97-99. Thermenos HW, Seidman LJ, Poldrack RA, et al. Elaborative verbal encoding and altered anterior parahippocampal activation in adolescents and young adults at genetic risk for schizophrenia using FMRI. <i>Biol Psychiatry</i> . 2007;61(4):564-574.
582		
583		
584		
585		
586		
587		
588		
589		
590		
591		
592		
593		
594		
595		
596		
597		
598		
599		
600		
601		
602		
603		
604		

605 Acknowledgements

606 Funding

- 607 This study was supported by a Medical Research Council grant (MR/J012149/1). Dr Bhattacharyya was
- 608 supported by the National Institute for Health Research (NIHR), UK through a NIHR Clinician Scientist
- 609 Award (NIHR CS-11-001), when this work was carried out.
- 610 The authors also acknowledge the support of the National Institute for Health Research (NIHR)/Wellcome
- 611 Trust King's Clinical Research Facility and the NIHR Biomedical Research Centre and Dementia Unit at
- 612 South London and Maudsley NHS Foundation Trust and King's College London.

613 Role of the funding source

- 614 The views expressed here are those of the authors and not necessarily those of the NHS, the NIHR or the
- 615 Department of Health. The funders had no role in the design and conduct of the study; collection, management,
- 616 analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to
- 617 submit the manuscript for publication. All authors have approved the final version of the paper.

618 Contributors

- 619 SB and PM designed the study; SB supervised the collection (RW, EAK) and analysis (AON) of the data and
- 620 wrote the first draft of the paper. All authors contributed to the interpretation of the data, revised the
- 621 manuscript and have approved the final manuscript.
- 622 Access to Data and Data Analysis: Sagnik Bhattacharyya had full access to all the data in the study and takes
- 623 responsibility for the integrity of the data and the accuracy of the data analysis.

624 **Conflict of interest disclosures**

- 625 Robin Murray has received honoraria giving lectures/seminars at meetings supported by Janssen, Sunovian,
- 626 Otsuka, and Lundbeck. All authors declare that they have no conflicts of interest.

641				
642				
643				
644				
645				
646 Tables:				
647				
648				
649				
650 Table 1. Sociodemographic and cli	nical measures	s at baseline		
	HC (n=19)	CHR-PLB	CHR-CBD	Statistics
	а	(n=17)	(n=16)	
Age (years), mean±SD	23.89±4.14	25.35 ± 5.24	22.43±4.95	HC vs CHR-PLB: $p=0.36$
				CHR-PLB vs CHR-CBD: $p=0.11$
Gender (m: f)	16:8	7:10	10:6	HC vs CHR-PLB: $p=0.50$
				CHR-PLB vs CHR-CBD: $p=0.30$
Education (years), mean±SD	16.94±1.59	12.00±3.69	14.50±3.06	HC vs CHR-PLB: $p=0.01$
				CHR-PLB vs CHR-CBD: $p=0.15$
CAARMS positive symptoms	-	42.94±29.46	40.19±20.79	<i>p</i> = 0.75
CAARMS negative symptoms	-	28.41±20.49	23.25±16.49	<i>p</i> = 0.43
STAI-S	-	38.94±10.17	40.31±9.06	<i>p</i> = 0.68
Number of patients who made a transition to	-	1	1	p=1
psychosis (n)				
Urine Drug screen (UDS) results: Clean	- ^b	8	10	CHR-PLB vs CHR-CBD: p=0.45
THC	-	5	2	
Morphine	-	0	1	
Benzodiazepines	-	1	0	
PCP	-	1	0	
Missing	-	2	3	
Cannabis Use: Lifetime use (Current use)	- ^c	17 (7)	15 (7)	<i>Lifetime use: p=0.48; Current use:</i>
(n)				<i>p</i> =1
Cannabis Use: Frequency- More than once a	-	12	11	<i>p</i> =0.38
week		-		
Once/ twice monthly	-	3	1	
Few times a year	-	0	2	
Only once/ twice lifetime	-	2	1	
Alcohol Use: Lifetime use (Current use) (n)	- ^d	13 (10)	12 (11)	<i>Lifetime use:</i> $p=1$; <i>Current use:</i> $p=0.59$
Alcohol Use: Frequency- Daily	-	2	1	p=0.59 p=0.59
More than once a week	-	4	4	p=0.07
Few times a month	-	3	4	
Few times a year	-	2	3	
Only once/ twice lifetime	-	2	0	
Nicotine Use: Lifetime use (Current use) (n)	- e	7 (5)	11 (9)	<i>Lifetime use: p=0.16; Current use:</i>
Webline Use. Ellethine use (Current use) (ii)		7 (3)	11())	p=1
Nicotine Use: Frequency- Daily	-	6	8	<i>p</i> =0.68
More than once a week	-	1	2	J I
Few times a month	-	0	1	
Total recall score	29.74±2.51	27.62±4.42	28.31±2.91	F _{2,48} =1.84, p=0.17
			ot compared wit	th CHR groups on these parameters
652 ^{b-} HC tested negative on UD				
653 ^c Cannabis use < 10 times li				
	rs-13; Frequen	cy (More than o	once a week- 5;	Few times a month- 3; Few times a year-
655 4) 656 ^e Nigoting use: Lifetime use		–		
656 ^{e-} Nicotine use: Lifetime use	ers-5 (2 current	t users); Frequei	ncy (Daily-2; Fe	w times a month- 1; Few times a year- 1;

Nicotine use: Lifetime users-5 (2 current users); Frequency (Daily-2; Few times a month- 1; Few times a year- 1; Only once/ twice lifetime- 1)

'3	controls (HC, n=19) during verbal encoding
'2	Table 2 A: Differences in activation between placebo-treated CHR (CHR-PLB, n=16) participants and healthy

Region	Coor (TAL	dinates (/)	of peak	Cluster size	p value*
	X	Y	Z	_	
Middle frontal gyrus extending to inferior frontal gyrus and insula	36	37	10	165	0.0001
Claustrum/ Insula extending to inferior frontal gyrus and putamen	-25	26	3	96	0.001
Precentral gyrus extending to postcentral gyrus and inferior parietal lobule	40	-7	36	134	0.00051
Left cerebellum extending to lingual gyrus	-40	-67	-16	77	0.0011
CHR-PLB < HC					
Subcallosal gryus / caudate head	14	11	-10	72	0.00093
Anterior cingulate	-4	41	0	18	0.00093
Caudate tail extending to posterior cingulate cortex	18	-33	16	28	0.00021
Precuneus extending to cuneus	4	-63	30	156	0.00021

675

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.

Revised version: PSY18-0236	22
	~~

Table 2B: Differences in activation between placebo-treated CHR (CHR-PLB, n=16) participants and healthy
 controls (HC, n=19) during verbal recall

Region	Coordinates of peak (TAL)			Cluster size	p value*
	X	Y	Z	_	
Inferior frontal gyrus extending to middle frontal gyrus, insula and precentral gyrus	47	11	23	146	0.0001
Cuneus extending to fusiform gyrus, lingual gyrus and posterior cingulate cortex	29	-74	7	196	0.0001
Cerebellum extending to middle occipital gyrus and fusiform gyrus	-36	-63	-13	83	0.0015
CHR-PLB < HC				-	-
Parahippocampal gyrus extending to midbrain, cerebellum and thalamus	-18	-26	-13	131	0.000096
Superior temporal gyrus extending to the middle temporal gyrus	-50	-18	0	80	0.00038
Superior temporal gyrus extending to the transverse temporal gyrus	-50	-30	13	33	0.003
Middle frontal gyrus	-25	11	33	57	0.0034

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.

- 697 698 Table 3A: Differences in activation between placebo-treated CHR (CHR-PLB, n=16) and CBD-treated CHR (CHR-CBD, n=15) subjects during verbal encoding and recall

Region	Coor (TAL	dinates o	Cluster size	p value*	
	Х	Y	Z		
Encoding: CHR-PLB > CHR-CBD					
Parahippocampal gyrus, extending to superior temporal gyrus and cerebellum	-29	-30	-13	75	0.0032
Encoding: PLB-CHR < CBD-CHR					
Precentral gyrus	43	-7	30	40	0.0033
	-40	-11	36	72	0.0005
Recall: PLB-CHR < CBD-CHR					
Cingulate gyrus, extending to body of caudate	-14	15	30	365	0.00010
Precentral gyrus, extending to cingulate gyrus	43	-18	33	362	0.00010
Medial frontal gyrus	-7	0	49	61	0.0021

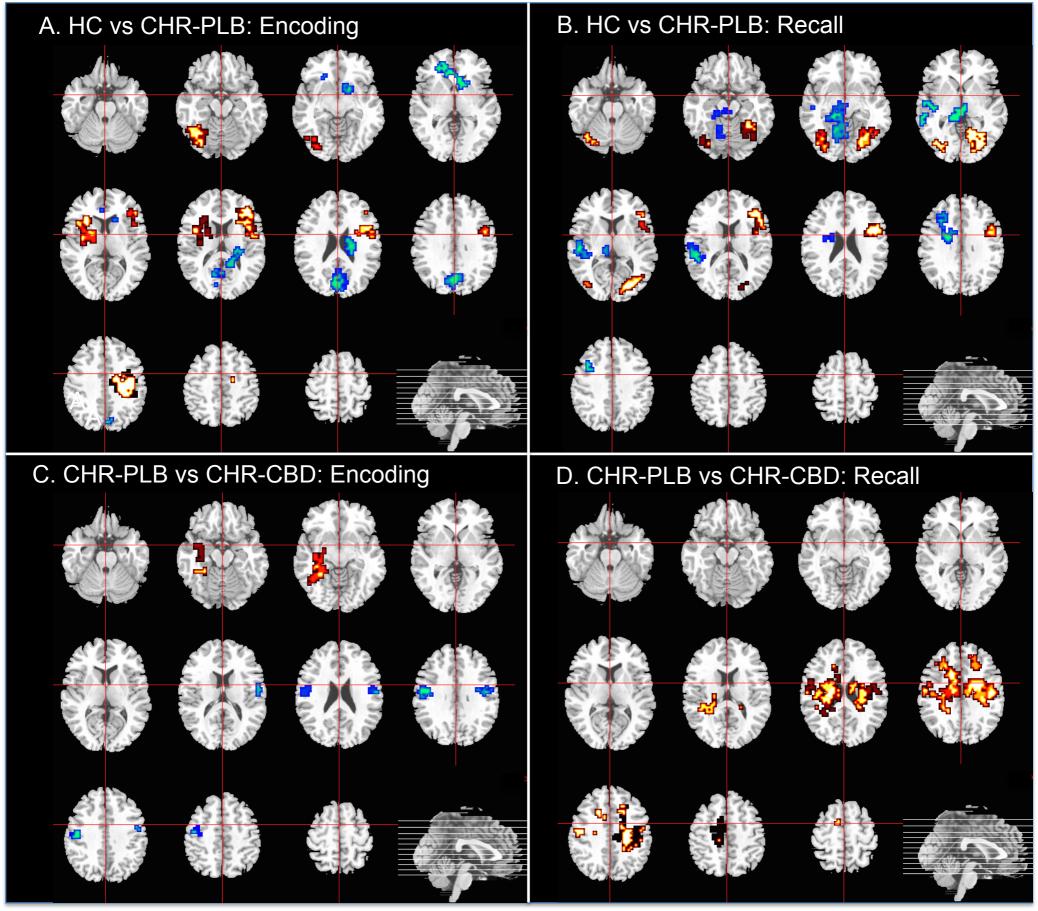
TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster. There were no significant clusters for **PLB-CHR** > **CBD-CHR** during recall.

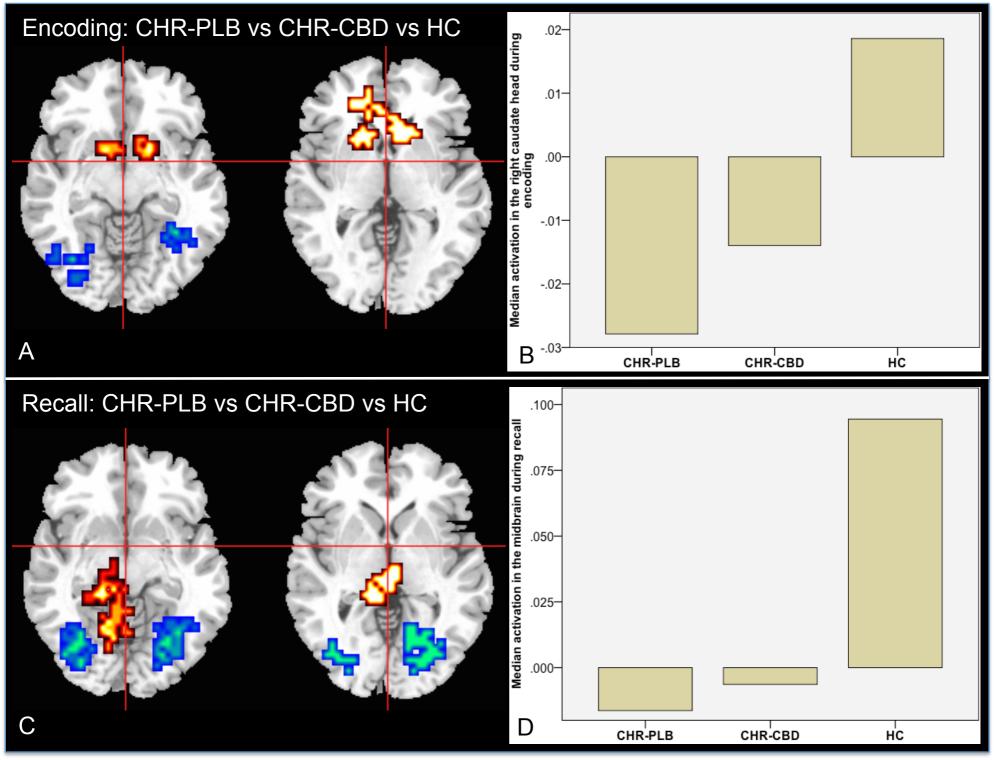
702 703 704

Table 3B: Linear relationship in activation across all groups during verbal encoding (CHR-PLB, n=16; CHR-

Region	Coord (TAL)	linates of)	Cluster size	p value*	
	Х	Y	Z		
CHR-PLB > CHR-CBD > HC					
Inferior frontal gyrus, extending to middle	40	37	10	135	0.0001
frontal gyrus and insula					
Insula, extending to putamen	-36	11	10	112	0.0004
Precentral gyrus	-40	-11	30	39	0.0040
	-51	-4	16	34	0.0031
	40	-11	36	124	0.0002
Fusiform gyrus, extending to cerebellum	43	-44	-13	53	0.0027
Cerebellum, extending to fusiform gyrus	-22	-52	-16	100	0.0004
CHR-PLB < CHR-CBD < HC					
Caudate head, extending to anterior cingulate	-14	22	0	44	0.0041
and putamen					
Subcallosal gyrus/ caudate head	14	11	-10	87	0.0011
Caudate tail, extending to posterior cingulate	18	-37	13	65	0.0038
cortex					
Precuneus, extending to Cuneus	4	-63	30	185	0.0001

705 TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.


Table 3C: Linear relationship in activation across all groups during verbal recall (CHR-PLB, n=16; CHR-CBD, n=15; HC, n=19)


706 707 708

Region		dinates	of peak	Cluster	р
	(TAL	.)		size	value*
	Х	Y	Z		
CHR-PLB > CHR-CBD > HC					
Inferior frontal gyrus, extending to middle frontal gyrus and	47	11	23	120	0.0001
insula					
Precuneus, extending to cuneus, lingual, middle occipital and	25	-74	7	176	0.0001
fusiform gyri and cerebellum					
Cerebellum, extending to fusiform, lingual and inferior	-36	-63	-13	73	0.0019
occipital gyri					
CHR-PLB < CHR-CBD < HC					
Parahippocampal gyrus, extending to midbrain and	-18	-26	-13	82	0.0008
cerebellum					
Thalamus	-7	-26	-3	33	0.0032
Transverse temporal gyrus, extending to superior temporal	-50	-26	13	33	0.0037
gyrus					
Precentral gyrus, extending to cingulate gyrus and	-36	18	36	60	0.0016
body of caudate					

TAL = Talairach coordinate system. *Corrected for less than 1 false positive cluster.

715 716 717	Figure Legends:
718	Figure 1. Altered brain activation in CHR (CHR-PLB vs HC)
719	A. Clusters showing greater (red/yellow) or reduced (blue/ green) activation in CHR-PLB compared to HC
720	during the encoding condition.
721	B. Clusters showing greater (red/yellow) or reduced (blue/ green) activation in CHR-PLB compared to HC
722	during the recall condition.
723	C. Clusters showing greater (red/yellow) or reduced (blue/ green) activation in CHR-PLB compared to CHR-
724	CBD during verbal encoding.
725	D. Clusters showing greater (red/yellow) activation in CHR-PLB compared to CHR-CBD during the recall
726	condition.
727	The right side of the brain is shown on the right of the images.
728	
729	Figure 2. Effect of CBD on brain activation compared to placebo in CHR and healthy controls
730	A. Clusters where activation during encoding differed across the 3 groups in a linear relationship. In the
731	head of caudate (red/yellow), activation was greatest in HC, lowest in CHR-PLB and intermediate in
732	CHR-CBD. The opposite pattern (CHR-PLB>CHR-CBD>HC) was seen in occipital regions (blue).
733	B. Activation in each group in the right caudate head during encoding (arbitrary units; as indexed using
734	median SSQ ratio)
735	C. Clusters where there was a linear group difference in activation during recall. In the parahippocampal
736	region and midbrain (red/yellow), activation was greatest in HC, lowest in CHR-PLB and intermediate
737	in CHR-CBD. The opposite pattern (CHR-PLB>CHR-CBD>HC) was seen in occipital regions (blue).
738	D. Median activation in each group in the midbrain during recall (arbitrary units; as indexed using median
739	SSQ ratio)
740	SSQ ratio statistic refers to the ratio of sum of squares (SSQ) of deviations from the mean image intensity due
741	to the model (over the whole time series), to the SSQ of deviations due to the residuals. The right side of the
742	brain is shown on the right of the images.

