27 research outputs found

    Monitoring protein interactions and dynamics with solvatochromic fluorophores

    Get PDF
    Solvatochromic fluorophores possess emission properties that are sensitive to the nature of the local microenvironment. These dyes have been exploited in applications ranging from the study of protein structural dynamics to the detection of protein-binding interactions. Although the solvatochromic indole fluorophore of tryptophan has been utilized extensively for in vitro studies to advance our understanding of basic protein biochemistry, the emergence of new extrinsic synthetic dyes with improved properties, in conjunction with recent developments in site-selective methods to incorporate these chemical tools into proteins, now open the way for studies in more complex systems. Herein, we discuss recent technological advancements and their application in the design of powerful reporters, which serve critical roles in modern cell biology and assay development.National Institutes of Health (U.S.) (NIH Cell Migration Consortium (GM064346))National Science Foundation (U.S.) (CHE-0414243)National Institutes of Health (U.S.) (Interdepartmental Biotechnology Training Grant T32 GM08334)European Commission (Marie Curie Postdoctoral Fellowship Program

    Regulation of AMPA receptor surface diffusion by PSD-95 slots

    No full text
    Excitatory synaptic transmission is largely mediated by AMPA receptors (AMPARs) present at the postsynaptic density. Recent studies in single molecule tracking of AMPAR has revealed that extrasynaptic AMPARs are highly mobile and thus might serve as a readily available pool for their synaptic recruitment during synaptic plasticity events such as long-term potentiation (LTP). Because this hypothesis relies on the cell's ability to increase the number of diffusional traps or 'slots' at synapses during LTP, we will review a number of protein-protein interactions that might impact AMPARs lateral diffusion and thus potentially serve as slots. Recent studies have identified the interaction between the AMPAR-Stargazin complex and PSD-95 as the minimal components of the diffusional trapping slot. We will overview the molecular basis of this critical interaction, its activity-dependent regulation and its potential contribution to LTP

    Caged Mono- and Divalent Ligands for Light-Assisted Disruption of PDZ Domain-Mediated Interactions

    No full text
    We report a general method for light-assisted control of interactions of PDZ domain binding motifs with their cognate domains by the incorporation of a photolabile caging group onto the essential C-terminal carboxylate binding determinant of the motif. The strategy was implemented and validated for both simple monovalent and biomimetic divalent ligands, which have recently been established as powerful tools for acute perturbation of native PDZ domain-dependent interactions in live cells.National Science Foundation (U.S.) (NSF CHE-0414243)European Commission (Marie Curie Postdoctoral Fellowship (PICK-CPP))France. Agence nationale de la recherch

    Fluorogenic probes for monitoring peptide binding to class II MHC proteins in living cells

    No full text
    A crucial step in the immune response is the binding of antigenic peptides to major histocompatibility complex (MHC) proteins. Class II MHC proteins present their bound peptides to CD4(+) T cells, thereby helping to activate both the humoral and the cellular arms of the adaptive immune response. Peptide loading onto class II MHC proteins is regulated temporally, spatially and developmentally in antigen-presenting cells. To help visualize these processes, we have developed a series of novel fluorogenic probes that incorporate the environment-sensitive amino acid analogs 6-N,N-dimethylamino-2-3-naphthalimidoalanine and 4-N,N-dimethylaminophthalimidoalanine. Upon binding to class II MHC proteins these fluorophores show large changes in emission spectra, quantum yield and fluorescence lifetime. Peptides incorporating these fluorophores bind specifically to class II MHC proteins on antigen-presenting cells and can be used to follow peptide binding in vivo. Using these probes we have tracked a developmentally regulated cell-surface peptide-binding activity in primary human monocyte-derived dendritic cells

    Neurexin-1β Binding to Neuroligin-1 Triggers the Preferential Recruitment of PSD-95 versus Gephyrin through Tyrosine Phosphorylation of Neuroligin-1

    Get PDF
    Adhesion between neurexin-1β (Nrx1β) and neuroligin-1 (Nlg1) induces early recruitment of the postsynaptic density protein 95 (PSD-95) scaffold; however, the associated signaling mechanisms are unknown. To dissociate the effects of ligand binding and receptor multimerization, we compared conditions in which Nlg1 in neurons was bound to Nrx1β or nonactivating HA antibodies. Time-lapse imaging, fluorescence recovery after photobleaching, and single-particle tracking demonstrated that in addition to aggregating Nlg1, Nrx1β binding stimulates the interaction between Nlg1 and PSD-95. Phosphotyrosine immunoblots and pull-down of gephyrin by Nlg1 peptides in vitro showed that Nlg1 can be phosphorylated at a unique tyrosine (Y782), preventing gephyrin binding. Expression of Nlg1 point mutants in neurons indicated that Y782 phosphorylation controls the preferential binding of Nlg1 to PSD-95 versus gephyrin, and accordingly the formation of inhibitory and excitatory synapses. We propose that ligand-induced changes in the Nlg1 phosphotyrosine level control the balance between excitatory and inhibitory scaffold assembly during synapse formation and stabilization

    Forces generated by lamellipodial actin filament elongation regulate the WAVE complex during cell migration

    No full text
    International audienceActin filaments generate mechanical forces that drive membrane movements during trafficking, endocytosis and cell migration. Reciprocally, adaptations of actin networks to forces regulate their assembly and architecture. Yet, a demonstration of forces acting on actin regulators at actin assembly sites in cells is missing. Here we show that local forces arising from actin filament elongation mechanically control WAVE regulatory complex (WRC) dynamics and function, that is, Arp2/3 complex activation in the lamellipodium. Single-protein tracking revealed WRC lateral movements along the lamellipodium tip, driven by elongation of actin filaments and correlating with WRC turnover. The use of optical tweezers to mechanically manipulate functional WRC showed that piconewton forces, as generated by single-filament elongation, dissociated WRC from the lamellipodium tip. WRC activation correlated with its trapping, dwell time and the binding strength at the lamellipodium tip. WRC crosslinking, hindering its mechanical dissociation, increased WRC dwell time and Arp2/3-dependent membrane protrusion. Thus, forces generated by individual actin filaments on their regulators can mechanically tune their turnover and hence activity during cell migration
    corecore