85 research outputs found

    Heparinase selectively sheds heparan sulphate from the endothelial glycocalyx

    Get PDF
    A healthy vascular endothelium is coated by the endothelial glycocalyx. Its main constituents are transmembrane syndecans and bound heparan sulphates. This structure maintains the physiological endothelial permeability barrier and prevents leukocyte and platelet adhesion, thereby mitigating inflammation and tissue oedema. Heparinase, a bacteria] analogue to heparanase, is known to attack the glycocalyx. However, the exact extent and specificity of degradation is unresolved. We show by electron microscopy, immunohistological staining and quantitative measurements of the constituent parts, that heparinase selectively sheds heparan sulphate from the glycocalyx, but not the synclecans

    A PICTURE IS WORTH MORE THAN A THOUSAND PURCHASES: DESIGNING AN IMAGE-BASED FASHION CURATION SYSTEM

    Get PDF
    Online retailing has been experiencing explosive growth for years and is dramatically reshaping the way people shop. Given the lack of personal interactions fashion retailers have to establish compelling service and information offerings to sustain this growth trajectory. A recent manifestation of this is the emergence of shopping curation as a service. For this purpose, experts manually craft individual outfits based on customer information from questionnaires. For the retailers as well as for the customers, this process entails severe weaknesses, particularly with regard to immediateness, scalability, and perceived financial risks. To overcome these limitations, we present an artificial fashion curation system for individual outfit recommendations that leverages deep learning techniques and unstructured data from social media and fashion blogs. Here, we lay out the artifact design and provide a comprehensive evaluation strategy to assess the system\u27s utility

    Perspectives in Microvascular Fluid Handling: Does the Distribution of Coagulation Factors in Human Myocardium Comply with Plasma Extravasation in Venular Coronary Segments?

    Get PDF
    Background: Heterogeneity of vascular permeability has been suggested for the coronary system. Whereas arteriolar and capillary segments are tight, plasma proteins pass readily into the interstitial space at venular sites. Fittingly, lymphatic fluid is able to coagulate. However, heart tissue contains high concentrations of tissue factor, presumably enabling bleeding to be stopped immediately in this vital organ. The distribution of pro- and anti-coagulatively active factors in human heart tissue has now been determined in relation to the types of microvessels. Methods and Results: Samples of healthy explanted hearts and dilated cardiomyopathic hearts were immunohistochemically stained. Albumin was found throughout the interstitial space. Tissue factor was packed tightly around arterioles and capillaries, whereas the tissue surrounding venules and small veins was practically free of this starter of coagulation. Thrombomodulin was present at the luminal surface of all vessel segments and especially at venular endothelial cell junctions. Its product, the anticoagulant protein C, appeared only at discrete extravascular sites, mainly next to capillaries. These distribution patterns were basically identical in the healthy and diseased hearts, suggesting a general principle. Conclusions: Venular extravasation of plasma proteins probably would not bring prothrombin into intimate contact with tissue factor, avoiding interstitial coagulation in the absence of injury. Generation of activated protein C via thrombomodulin is favored in the vicinity of venular gaps, should thrombin occur inside coronary vessels. This regionalization of distribution supports the proposed physiological heterogeneity of the vascular barrier and complies with the passage of plasma proteins into the lymphatic system of the heart. Copyright (C) 2010 S. Karger AG, Base

    Estimating mixed quantum states

    Get PDF
    We discuss single adaptive measurements for the estimation of mixed quantum states of qubits. The results are compared to the optimal estimation schemes using collective measurements. We also demonstrate that the advantage of collective measurements increases when the degree of mixing of the quantum states increases.Comment: RevTeX, 7 pages, 4 figure

    The AI Ghostwriter Effect: When Users Do Not Perceive Ownership of AI-Generated Text But Self-Declare as Authors

    Full text link
    Human-AI interaction in text production increases complexity in authorship. In two empirical studies (n1 = 30 & n2 = 96), we investigate authorship and ownership in human-AI collaboration for personalized language generation. We show an AI Ghostwriter Effect: Users do not consider themselves the owners and authors of AI-generated text but refrain from publicly declaring AI authorship. Personalization of AI-generated texts did not impact the AI Ghostwriter Effect, and higher levels of participants' influence on texts increased their sense of ownership. Participants were more likely to attribute ownership to supposedly human ghostwriters than AI ghostwriters, resulting in a higher ownership-authorship discrepancy for human ghostwriters. Rationalizations for authorship in AI ghostwriters and human ghostwriters were similar. We discuss how our findings relate to psychological ownership and human-AI interaction to lay the foundations for adapting authorship frameworks and user interfaces in AI in text-generation tasks.Comment: Pre-print; currently under revie

    Exogenous nitric oxide requires an endothelial glycocalyx to prevent postischemic coronary vascular leak in guinea pig hearts

    Get PDF
    Introduction Postischemic injury to the coronary vascular endothelium, in particular to the endothelial glycocalyx, may provoke fluid extravasation. Shedding of the glycocalyx is triggered by redox stress encountered during reperfusion and should be alleviated by the radical scavenger nitric oxide (NO). The objective of this study was to investigate the effect of exogenous administration of NO during reperfusion on both coronary endothelial glycocalyx and vascular integrity. Methods Isolated guinea pig hearts were subjected to 15 minutes of warm global ischemia followed by 20 minutes of reperfusion in the absence (Control group) and presence (NO group) of 4 mu M NO. In further experiments, the endothelial glycocalyx was enzymatically degraded by means of heparinase followed by reperfusion without (HEP group) and with NO (HEP+NO group). Results Ischemia and reperfusion severely damaged the endothelial glycocalyx. Shedding of heparan sulfate and damage assessed by electron microscopy were less in the presence of NO. Compared with baseline, coronary fluid extravasation increased after ischemia in the Control, HEP, and HEP+NO groups but remained almost unchanged in the NO group. Tissue edema was significantly attenuated in this group. Coronary vascular resistance rose by 25% to 30% during reperfusion, but not when NO was applied, irrespective of the state of the glycocalyx. Acute postischemic myocardial release of lactate was comparable in the four groups, whereas release of adenine nucleotide catabolites was reduced 42% by NO. The coronary venous level of uric acid, a potent antioxidant and scavenger of peroxynitrite, paradoxically decreased during postischemic infusion of NO. Conclusion The cardioprotective effect of NO in postischemic reperfusion includes prevention of coronary vascular leak and interstitial edema and a tendency to forestall both no-reflow and degradation of the endothelial glycocalyx

    The endothelial glycocalyx prefers albumin for evoking shear stress-induced, nitric oxide-mediated coronary dilatation

    Get PDF
    Background: Shear stress induces coronary dilatation via production of nitric oxide ( NO). This should involve the endothelial glycocalyx ( EG). A greater effect was expected of albumin versus hydroxyethyl starch ( HES) perfusion, because albumin seals coronary leaks more effectively than HES in an EG-dependent way. Methods: Isolated hearts ( guinea pigs) were perfused at constant pressure with Krebs-Henseleit buffer augmented with 1/3 volume 5% human albumin or 6% HES ( 200/0.5 or 450/0.7). Coronary flow was also determined after EG digestion ( heparinase) and with nitro-L-arginine ( NO-L-Ag). Results: Coronary flow ( 9.50 +/- 1.09, 5.10 +/- 0.49, 4.87 +/- 1.19 and 4.15 +/- 0.09 ml/ min/ g for `albumin', `HES 200', `HES 450' and `control', respectively, n = 5-6) did not correlate with perfusate viscosity ( 0.83, 1.02, 1.24 and 0.77 cP, respectively). NO-L-Ag and heparinase diminished dilatation by albumin, but not additively. Alone NO-L-Ag suppressed coronary flow during infusion of HES 450. Electron microscopy revealed a coronary EG of 300 nm, reduced to 20 nm after heparinase. Cultured endothelial cells possessed an EG of 20 nm to begin with. Conclusions: Albumin induces greater endothelial shear stress than HES, despite lower viscosity, provided the EG contains negative groups. HES 450 causes some NO-mediated dilatation via even a rudimentary EG. Cultured endothelial cells express only a rudimentary glycocalyx, limiting their usefulness as a model system. Copyright (c) 2007 S. Karger AG, Basel

    Organometallic-Organic Hybrid Polymers Assembled from Pentaphosphaferrocene, Bipyridyl Linkers, and Cul Ions

    Get PDF
    A multicomponent approach of the P-n ligand complex [Cp*Fe((5)-P-5)] (1: Cp* = (5)-C5Me5) with the ditopic organic linkers 4,4-bipyridine (2) or trans-1,2-di(pyridine-4-yl)ethene (3) in the presence of Cu-I salts of the anions [BF4](-) and [PF6](-) or the coordinating anion Br-, leads to the formation of four novel organometallic-organic hybrid polymers: the cationic 1D polymeric compounds [Cu-4{Cp*Fe(mu(3),(5:1:1)-P-5)}(2)(mu,(1:1)-C10H8N2)(4)(CH3CN)(4)](n)[BF4](4n) (4) and [Cu-4{Cp*Fe(mu(3),(5:1:1)-P-5)}(2)(mu,(1:1)-C10H8N2)(4)(CH3CN)(4)](n)[PF6](4n) (5) as well as the unique neutral threefold 2D 2D interpenetrated networks [Cu2Cl2{Cp*Fe(mu(3),(5:1:1)-P-5)}(mu,(1:1)-C12H10N2)](n) (6) and [Cu2Br2{Cp*Fe(mu(3),(5:1:1)-P-5)}(mu,(1:1)-C10H8N2)](n) (7)
    corecore