4 research outputs found

    A Continuous, Fluorogenic Sirtuin 2 Deacylase Assay: Substrate Screening and Inhibitor Evaluation

    No full text
    Sirtuins are important regulators of lysine acylation, which is implicated in cellular metabolism and transcriptional control. This makes the sirtuin class of enzymes interesting targets for development of small molecule probes with pharmaceutical potential. To achieve detailed profiling and kinetic insight regarding sirtuin inhibitors, it is important to have access to efficient assays. In this work, we report readily synthesized fluorogenic substrates enabling enzyme-economical evaluation of SIRT2 inhibitors in a continuous assay format as well as evaluation of the properties of SIRT2 as a long chain deacylase enzyme. Novel enzymatic activities of SIRT2 were thus established in vitro, which warrant further investigation, and two known inhibitors, suramin and SirReal2, were profiled against substrates containing ε-<i>N</i>-acyllysine modifications of varying length

    Aminothiazoles as Potent and Selective Sirt2 Inhibitors: A Structure–Activity Relationship Study

    No full text
    Sirtuins are NAD<sup>+</sup>-dependent protein deacylases that cleave off acetyl but also other acyl groups from the ε-amino group of lysines in histones and other substrate proteins. Dysregulation of human Sirt2 (hSirt2) activity has been associated with the pathogenesis of cancer, inflammation, and neurodegeneration, which makes the modulation of hSirt2 activity a promising strategy for pharmaceutical intervention. The sirtuin rearranging ligands (SirReals) have recently been discovered by us as highly potent and isotype-selective hSirt2 inhibitors. Here, we present a well-defined structure–activity relationship study, which rationalizes the unique features of the SirReals and probes the limits of modifications on this scaffold regarding inhibitor potency. Moreover, we present a crystal structure of hSirt2 in complex with an optimized SirReal derivative that exhibits an improved in vitro activity. Lastly, we show cellular hyperacetylation of the hSirt2 targeted tubulin caused by our improved lead structure
    corecore