10,784 research outputs found

    Efficient Image-Space Extraction and Representation of 3D Surface Topography

    Full text link
    Surface topography refers to the geometric micro-structure of a surface and defines its tactile characteristics (typically in the sub-millimeter range). High-resolution 3D scanning techniques developed recently enable the 3D reconstruction of surfaces including their surface topography. In his paper, we present an efficient image-space technique for the extraction of surface topography from high-resolution 3D reconstructions. Additionally, we filter noise and enhance topographic attributes to obtain an improved representation for subsequent topography classification. Comprehensive experiments show that the our representation captures well topographic attributes and significantly improves classification performance compared to alternative 2D and 3D representations.Comment: Initial version of the paper accepted at the IEEE ICIP Conference 201

    Dynamics of symmetry breaking during quantum real-time evolution in a minimal model system

    Get PDF
    One necessary criterion for the thermalization of a nonequilibrium quantum many-particle system is ergodicity. It is, however, not sufficient in case where the asymptotic long-time state lies in a symmetry-broken phase but the initial state of nonequilibrium time evolution is fully symmetric with respect to this symmetry. In equilibrium one particular symmetry-broken state is chosen due to the presence of an infinitesimal symmetry-breaking perturbation. We study the analogous scenario from a dynamical point of view: Can an infinitesimal symmetry-breaking perturbation be sufficient for the system to establish a nonvanishing order during quantum real-time evolution? We study this question analytically for a minimal model system that can be associated with symmetry breaking, the ferromagnetic Kondo model. We show that after a quantum quench from a completely symmetric state the system is able to break its symmetry dynamically and discuss how these features can be observed experimentally.Comment: 4+3 pages, 3 figures, minor change

    Diffusion of a sphere in a dilute solution of polymer coils

    Full text link
    We calculate the short time and the long time diffusion coefficient of a spherical tracer particle in a polymer solution in the low density limit by solving the Smoluchowski equation for a two-particle system and applying a generalized Einstein relation (fluctuation dissipation theorem). The tracer particle as well as the polymer coils are idealized as hard spheres with a no-slip boundary condition for the solvent but the hydrodynamic radius of the polymer coils is allowed to be smaller than the direct-interaction radius. We take hydrodynamic interactions up to 11th order in the particle distance into account. For the limit of small polymers, the expected generalized Stokes-Einstein relation is found. The long time diffusion coefficient also roughly obeys the generalized Stokes-Einstein relation for larger polymers whereas the short time coefficient does not. We find good qualitative and quantitative agreement to experiments.Comment: 9 Pages, 6 Figures, J. Chem. Phys. (in print

    Oaxaca/Blinder decompositions for nonlinear models

    Get PDF
    This paper describes the estimation of a general Blinder–Oaxaca decomposition of the mean outcome differential of linear and nonlinear regression models. Departing from this general model, we show how it can be applied to different models with discrete and limited dependent variables.

    Three discontinuous Galerkin schemes for the anisotropic heat conduction equation on non-aligned grids

    Full text link
    We present and discuss three discontinuous Galerkin (dG) discretizations for the anisotropic heat conduction equation on non-aligned cylindrical grids. Our most favourable scheme relies on a self-adjoint local dG (LDG) discretization of the elliptic operator. It conserves the energy exactly and converges with arbitrary order. The pollution by numerical perpendicular heat fluxes degrades with superconvergence rates. We compare this scheme with aligned schemes that are based on the flux-coordinate independent approach for the discretization of parallel derivatives. Here, the dG method provides the necessary interpolation. The first aligned discretization can be used in an explicit time-integrator. However, the scheme violates conservation of energy and shows up stagnating convergence rates for very high resolutions. We overcome this partly by using the adjoint of the parallel derivative operator to construct a second self-adjoint aligned scheme. This scheme preserves energy, but reveals unphysical oscillations in the numerical tests, which result in a decreased order of convergence. Both aligned schemes exhibit low numerical heat fluxes into the perpendicular direction. We build our argumentation on various numerical experiments on all three schemes for a general axisymmetric magnetic field, which is closed by a comparison to the aligned finite difference (FD) schemes of References [1,2
    • …
    corecore