1 research outputs found

    The Namib Turbulence Experiment: Investigating surface-atmosphere heat transfer in three dimensions

    No full text
    The Namib Turbulence EXperiment (NamTEX) was a multi-national micrometeorological campaign conducted in the Central Namib Desert to investigate three-dimensional surface layer turbulence and the spatio-temporal patterns of heat transfer between the sub-surface, surface, and atmosphere. The Namib provides an ideal location for fundamental research that revisits some key assumptions in micrometeorology that are implicitly included in the parameterizations describing energy exchange in weather forecasting and climate models: Homogenous flat surfaces, no vegetation, little moisture, and cloud-free skies create a strong and consistent diurnal forcing, resulting in a wide range of atmospheric stabilities. A novel combination of instruments was used to simultaneously measure variables and processes relevant to heat transfer: A three km fibre-optic distributed temperature sensor (DTS) was suspended in a pseudo-three-dimensional array within a 300 m x 300 m domain to provide vertical cross-sections of air temperature fluctuations. Aerial and ground-based thermal imagers recorded high resolution surface temperature fluctuations within the domain and revealed the spatial thermal imprint of atmospheric structures responsible for heat exchange. High-resolution soil temperature and moisture profiles together with heat flux plates provided information on near-surface soil dynamics. Turbulent heat exchange was measured with a vertical array of five eddy-covariance point measurements on a 21-m mast, as well as by co-located small- and large-aperture scintillometers. This contribution first details the scientific goals and experimental set-up of the NamTEX campaign. Then using a typical day, we demonstrate i) the coupling of surface layer, surface, and soil temperatures using high-frequency temperature measurements, ii) differences in spatial and temporal standard deviations of the horizontal temperature field using spatially distributed measurements, and iii) horizontal anisotropy of the turbulent temperature field
    corecore