3 research outputs found

    Multisensor ImagingFrom Sample Preparation to Integrated Multimodal Interpretation of LA-ICPMS and MALDI MS Imaging Data

    No full text
    Laterally resolved chemical analysis (chemical imaging) has increasingly attracted attention in the Life Sciences during the past years. While some developments have provided improvements in lateral resolution and speed of analysis, there is a trend toward the combination of two or more analysis techniques, so-called multisensor imaging, for providing deeper information into the biochemical processes within one sample. In this work, a human malignant pleural mesothelioma sample from a patient treated with cisplatin as a cytostatic agent has been analyzed using laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS). While LA-ICPMS was able to provide quantitative information on the platinum distribution along with the distribution of other elemental analytes in the tissue sample, MALDI MS could reveal full information on lipid distributions, as both modes of polarity, negative and positive, were used for measurements. Tandem MS experiments verified the occurrence of distinct lipid classes. All imaging analyses were performed using a lateral resolution of 40 μm, providing information with excellent depth of details. By analyzing the very same tissue section, it was possible to perfectly correlate the obtained analyte distribution information in an evaluation approach comprising LA-ICPMS and MALDI MS data. Correlations between platinum, phosphorus, and lipid distributions were found by the use of advanced statistics. The present proof-of-principle study demonstrates the benefit of data combination for outcomes beyond one method imaging modality and highlights the value of advanced chemical imaging in the Life Sciences

    In Situ Characterization of Tissue-Resident Immune Cells by MALDI Mass Spectrometry Imaging

    No full text
    Tissue-resident immune cells differ from their corresponding blood cells in many functional aspects. Although the proteome of blood immune cells has been well-investigated, there are almost no data on tissue-resident immune cells. Here, we explored the potential of using MALDI-TOF-MS imaging (MSI) to investigate these cells in colon tissue, which exhibits a strong infiltration of immune cells. MSI identified several proteinaceous markers that colocalized with specific structures of the colon, such as mucosa or muscularis mucosae, in six patients. In addition, we showed that certain <i>m</i>/<i>z</i> values have the same spatial distribution as CD3<sup>+</sup> T lymphocytes in the lymphoid follicular structures or as CD206<sup>+</sup> macrophages in the lamina propria. For further corroboration, blood lymphocytes and monocytes from 10 healthy volunteers were analyzed by intact cell mass spectrometry (ICMS). Furthermore, we analyzed monocyte-derived macrophages that had been polarized in vitro into proinflammatory M<sub>1</sub> and anti-inflammatory M<sub>2</sub> phenotypes. The mass spectra differed clearly among all immune cell types. Additionally, it was found that distinct signals from ICMS analysis were identical to the <i>m</i>/<i>z</i> values found in the MSI experiment in lymphoid follicular structures. These data show for the first time that MSI is well-suited to visualize the spatial distribution of immune cells in human colon tissue. We consider MALDI mass spectrometry imaging to be a technique with high potential for use in rapid investigations of tissue-specific features of cells

    Additional file 1: of Phosphonate coating of SiO2 nanoparticles abrogates inflammatory effects and local changes of the lipid composition in the rat lung: a complementary bioimaging study

    No full text
    Figure S1. Effect of different SiO2 NP on lung histology. Figure S2. MALDI-MS/MS spectrum resulting from the fragmentation of precursor m/z 721.4. Figure S3. MALDI-MS/MS spectrum resulting from the fragmentation of precursor m/z 861.5. Figure S4. Ion images from a vehicle-treated control lung. Figure S5. Ion images from a SiO2-p-treated control lung. (DOCX 1889 kb
    corecore