24,181 research outputs found
Parton Orbital Angular Momentum and Final State Interactions
Definitions of orbital angular momentum based on Wigner distributions are
used as a framework to discuss the connection between the Ji definition of the
quark orbital angular momentum and that of Jaffe and Manohar.We find that the
difference between these two definitions can be interpreted as the change in
the quark orbital angular momentum as it leaves the target in a DIS experiment.
The mechanism responsible for that change is similar to the mechanism that
causes transverse single-spin asymmetries in semi-inclusive deep-inelastic
scattering.Comment: 6 pages, 2 figures, version to appear in PR
Roaming Real-Time Applications - Mobility Services in IPv6 Networks
Emerging mobility standards within the next generation Internet Protocol,
IPv6, promise to continuously operate devices roaming between IP networks.
Associated with the paradigm of ubiquitous computing and communication, network
technology is on the spot to deliver voice and videoconferencing as a standard
internet solution. However, current roaming procedures are too slow, to remain
seamless for real-time applications. Multicast mobility still waits for a
convincing design. This paper investigates the temporal behaviour of mobile
IPv6 with dedicated focus on topological impacts. Extending the hierarchical
mobile IPv6 approach we suggest protocol improvements for a continuous
handover, which may serve bidirectional multicast communication, as well. Along
this line a multicast mobility concept is introduced as a service for clients
and sources, as they are of dedicated importance in multipoint conferencing
applications. The mechanisms introduced do not rely on assumptions of any
specific multicast routing protocol in use.Comment: 15 pages, 5 figure
Performance Analysis of Multicast Mobility in a Hierarchical Mobile IP Proxy Environment
Mobility support in IPv6 networks is ready for release as an RFC, stimulating
major discussions on improvements to meet real-time communication requirements.
Sprawling hot spots of IP-only wireless networks at the same time await voice
and videoconferencing as standard mobile Internet services, thereby adding the
request for multicast support to real-time mobility. This paper briefly
introduces current approaches for seamless multicast extensions to Mobile IPv6.
Key issues of multicast mobility are discussed. Both analytically and in
simulations comparisons are drawn between handover performance characteristics,
dedicating special focus on the M-HMIPv6 approach.Comment: 11 pages, 7 figure
Explaining the observed velocity dispersion of dwarf galaxies by baryonic mass loss during the first collapse
In the widely adopted LambdaCDM scenario for galaxy formation, dwarf galaxies
are the building blocks of larger galaxies. Since they formed at relatively
early epochs when the background density was relatively high, they are expected
to retain their integrity as satellite galaxies when they merge to form larger
entities. Although many dwarf spheroidal galaxies (dSphs) are found in the
galactic halo around the Milky Way, their phase space density (or velocity
dispersion) appears to be significantly smaller than that expected for
satellite dwarf galaxies in the LambdaCDM scenario. In order to account for
this discrepancy, we consider the possibility that they may have lost a
significant fraction of their baryonic matter content during the first infall
at the Hubble expansion turnaround. Such mass loss arises naturally due to the
feedback by relatively massive stars which formed in their centers briefly
before the maximum contraction. Through a series of N-body simulations, we show
that the timely loss of a significant fraction of the dSphs initial baryonic
matter content can have profound effects on their asymptotic half-mass radius,
velocity dispersion, phase-space density, and the mass fraction between
residual baryonic and dark matter.Comment: 6 pages, 6 figures, accepted for publication in the Ap
- …