26 research outputs found

    Mutual Modulation of the Activities of Human CYP2D6 and Four UGTs during the Metabolism of Propranolol

    Get PDF
    Cytochromes P450 (CYP) and UDP-glucuronosyltransferases (UGT) are two enzyme families that play an important role in drug metabolism, catalyzing either the functionalization or glucuronidation of xenobiotics. However, their mutual interactions are poorly understood. In this study, the functional interactions of human CYP2D6 with four human UGTs (UGT1A7, UGT1A8, UGT1A9, and UGT2A1) were investigated using our previously established co-expression model system in the fission yeast Schizosaccharomyces pombe. The substrate employed was propranolol because it is well metabolized by CYP2D6. Moreover, the CYP2D6 metabolite 4-hydroxypropranolol is a known substrate for the four UGTs included in this study. Co-expression of either UGT1A7, UGT1A8, or UGT1A9 was found to increase the activity of CYP2D6 by a factor of 3.3, 2.1 or 2.8, respectively, for the conversion of propranolol to 4-hydroxypropranolol. In contrast, UGT2A1 co-expression did not change CYP2D6 activity. On the other hand, the activities of all four UGTs were completely suppressed by co-expression of CYP2D6. This data corroborates our previous report that CYP2D6 is involved in functional CYP-UGT interactions and suggest that such interactions can contribute to both adverse drug reactions and changes in drug efficacy

    Changes in Alprazolam Metabolism by CYP3A43 Mutants

    Get PDF
    Alprazolam is a triazolobenzodiazepine which is most commonly used in the short-term management of anxiety disorders, often in combination with antipsychotics. The four human members of the CYP3A subfamily are mainly responsible for its metabolism, which yields the main metabolites 4-hydroxyalprazolam and α-hydroxyalprazolam. We performed a comparison of alprazolam metabolism by all four CYP3A enzymes upon recombinant expression in the fission yeast Schizosaccharomyces pombe. CYP3A4 and CYP3A5 show the highest 4-hydroxyalprazolam production rates, while CYP3A5 alone is the major producer of α-hydroxyalprazolam. For both metabolites, CYP3A7 and CYP3A43 show lower activities. Computational simulations rationalize the difference in preferred oxidation sites observed between the exemplary enzymes CYP3A5 and CYP3A43. Investigations of the alprazolam metabolites formed by three previously described CYP3A43 mutants (L293P, T409R, and P340A) unexpectedly revealed that they produce 4-hydroxy-, but not α-hydroxyalprazolam. Instead, they all also make a different metabolite, which is 5-N-O alprazolam. With respect to 4-hydroxyalprazolam, the mutants showed fourfold (T409R) to sixfold (L293P and P340A) higher production rates compared to the wild-type (CYP3A43.1). In the case of 5-N-O alprazolam, the production rates were similar for the three mutants, while no formation of this metabolite was found in the wild-type incubation

    No Direct Hydroxylation of Pregnenolone by Steroid 21-Hydroxylase

    Get PDF
    Cytochrome P450s (CYPs) are an essential family of enzymes in the human body. They play a crucial role in metabolism, especially in human steroid biosynthesis. Reactions catalyzed by these enzymes are highly stereo- and regio-specific. Lack or severe malfunctions of CYPs can cause severe diseases and even shorten life. Hence, investigations on metabolic reactions and structural requirements of substrates are crucial to gain further knowledge on the relevance of different enzymes in the human body functions and the origin of diseases. One key enzyme in the biosynthesis of gluco- and mineralocorticoids is CYP21A2, also known as steroid 21-hydroxylase. To investigate the steric and regional requirements of substrates for this enzyme, we performed whole-cell biotransformation assays using a strain of fission yeast Schizosaccharomyces pombe recombinantly expressing CYP21A2. The progestogens progesterone, pregnenolone, and their 17α-hydroxy-derivatives were used as substrates. After incubation, samples were analyzed using gas chromatography coupled to mass spectrometry. For progesterone and 17α-hydroxyprogesterone, their corresponding 21-hydroxylated metabolites 11-deoxycorticosterone and 11-deoxycortisol were detected, while after incubation of pregnenolone and 17α-hydroxypregnenolone, no hydroxylated product was observed. Findings were confirmed with authentic reference material. Molecular docking experiments agree with these results and suggest that interaction between the 3-oxo group and arginine-234 of the enzyme is a strict requirement. The presented results demonstrate once more that the presence of an oxo-group in position 3 of the steroid is indispensable, while a 3-hydroxy group prevents hydroxylation in position C-21 by CYP21A2. This knowledge may be transferred to other CYP21A2 substrates and hence help to gain essential insights into steroid metabolism

    Title page Glucuronide production by whole-cell biotransformation using genetically engineered fission yeast S. pombe

    Get PDF
    Abstract Drug metabolites generated by UDP glycosyltransferases (UGTs) are needed for drug development and toxicity studies, especially in the context of safety testing of metabolites during drug development. Since chemical metabolite synthesis can be arduous, various biological approaches have been developed; however, no whole-cell biotransformation with recombinant microbes that express human UGTs was yet achieved. In this study we expressed human UDP glucose-6-dehydrogenase (UGDH) together with several human or rat UGT isoforms in the fission yeast Schizosaccharomyces pombe and generated strains that catalyze the whole-cell glucuronidation of standard substrates. Moreover, we established two methods to obtain stable isotope-labeled glucuronide metabolites: The first uses a labeled aglycon, while the second employs 13 C 6 -glucose as a metabolic precursor of isotope-labeled UDPglucuronic acid (UDP-GA) and yields a sixfold labeled glucuronide. The system described here should lead to a significant facilitation in the production of both labeled and unlabeled drug glucuronides for industry and academia. DMD 30965

    Biosynthesis of Salbutamol-4′-O-sulfate as Reference for Identification of Intake Routes and Enantiopure Salbutamol Administration by Achiral UHPLC-MS/MS

    Get PDF
    The aim of the study was a comprehensive and quantitative determination of salbutamol and its sulfoconjugated major metabolite in urine samples using achiral ultrahigh performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Therefore, salbutamol-4′-O-sulfate was biosynthesized as a reference using genetically modified fission yeast cells, and the product was subsequently characterized by NMR and HRMS. In competitive sports, salbutamol is classified as a prohibited drug; however, inhalation at therapeutic doses is permitted with a maximum allowance of 600 µg/8 h. In contrast, the enantiopure levosalbutamol is prohibited under any condition. For analytical discrimination, the amount of salbutamol and its main metabolite excreted in the urine was studied. As proof of concept, a longitudinal study in one healthy volunteer was performed in order to investigate excreted amounts and to study potential discrimination using achiral chromatography. Discrimination of administration of racemic salbutamol or the enantiopure levosalbutamol was not achieved by solely analyzing salbutamol as the parent compound. However, a distinction was possible by evaluation of the proportion of salbutamol-4′-O-sulfate in relation to salbutamol. Therefore, reference material of metabolites is of great importance in doping control, especially for threshold substances

    Complete Reaction Phenotyping of Propranolol and 4-Hydroxypropranolol with the 19 Enzymes of the Human UGT1 and UGT2 Families

    Get PDF
    Propranolol is a competitive non-selective beta-receptor antagonist that is available on the market as a racemic mixture. In the present study, glucuronidation of propranolol and its equipotent phase I metabolite 4-hydroxypropranolol by all 19 members of the human UGT1 and UGT2 families was monitored. UGT1A7, UGT1A9, UGT1A10 and UGT2A1 were found to glucuronidate propranolol, with UGT1A7, UGT1A9 and UGT2A1 mainly acting on (S)-propranolol, while UGT1A10 displays the opposite stereoselectivity. UGT1A7, UGT1A9 and UGT2A1 were also found to glucuronidate 4-hydroxypropranolol. In contrast to propranolol, 4-hydroxypropranolol was found to be glucuronidated by UGT1A8 but not by UGT1A10. Additional biotransformations with 4-methoxypropanolol demonstrated different regioselectivities of these UGTs with respect to the aliphatic and aromatic hydroxy groups of the substrate. Modeling and molecular docking studies were performed to explain the stereoselective glucuronidation of the substrates under study
    corecore