6 research outputs found

    Capture-based targeted sequencing using a T-cell control in myeloid malignancies and idiopathic cytopenias

    No full text
    We report on a study of next-generation sequencing in 257 patients undergoing investigations for cytopenias. We sequenced bone marrow aspirates using a target enrichment panel comprising 82 genes and used T cells from paired blood as a control. One hundred and sixty patients had idiopathic cytopenias, 81 had myeloid malignancies and 16 had lymphoid malignancies or other diagnoses. Forty-seven of the 160 patients with idiopathic cytopenias had evidence of somatic pathogenic variants consistent with clonal cytopenias. Only 39 genes of the 82 tested were mutated in the 241 patients with either idiopathic cytopenias or myeloid neoplasms. We confirm that T cells can be used as a control to distinguish between germline and somatic variants. The use of paired analysis with a T-cell control significantly reduced the time molecular scientists spent reporting compared to unpaired analysis. We identified somatic variants of uncertain significance (VUS) in a higher proportion (24%) of patients with myeloid malignancies or clonal cytopenias compared to less than 2% of patients with non-clonal cytopenias. This suggests that somatic VUS are indicators of a clonal process. Lastly, we show that blood depleted of lymphocytes can be used in place of bone marrow as a source of material for sequencing.</p

    Iron Regulatory Protein-1 Protects against Mitoferrin-1-deficient Porphyria.

    No full text
    Mitochondrial iron is essential for the biosynthesis of heme and iron-sulfur ([Fe-S]) clusters in mammalian cells. In developing erythrocytes, iron is imported into the mitochondria by MFRN1 (mitoferrin-1, SLC25A37). Although loss of MFRN1 in zebrafish and mice leads to profound anemia, mutant animals showed no overt signs of porphyria, suggesting that mitochondrial iron deficiency does not result in an accumulation of protoporphyrins. Here, we developed a gene trap model to provide in vitro and in vivo evidence that iron regulatory protein-1 (IRP1) inhibits protoporphyrin accumulation. Mfrn1(+/)(gt);Irp1(-/-) erythroid cells exhibit a significant increase in protoporphyrin levels. IRP1 attenuates protoporphyrin biosynthesis by binding to the 5\u27-iron response element (IRE) of alas2 mRNA, inhibiting its translation. Ectopic expression of alas2 harboring a mutant IRE, preventing IRP1 binding, in Mfrn1(gt/gt) cells mimics Irp1 deficiency. Together, our data support a model whereby impaired mitochondrial [Fe-S] cluster biogenesis in Mfrn1(gt/gt) cells results in elevated IRP1 RNA-binding that attenuates ALAS2 mRNA translation and protoporphyrin accumulation. J Biol Chem 2014 Mar 14; 289(11):7835-43

    Stratospheric ozone depletion: high arctic tundra plant growth on Svalbard is not affected by enhanced UV-B after 7 years of UV-B supplementation in the field.

    No full text
    The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78 degrees N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants
    corecore