47 research outputs found

    Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle

    Full text link
    Laser illumination used in both conventional widefield epi-fluorescence as well as in total internal reflection fluorescence (TIRF) microscopy is subject to nonuniformities in intensity that obscure true image details. These intensity variations are interference fringes arising from coherent light scattering and diffraction at every surface in the laser light's optical path, including the lenses, mirrors, and coverslip. We present an inexpensive technique for effectively eliminating these interference fringes based upon introduction of the excitation laser beam by oblique through-the-objective incidence coupled with rapid azimuthal rotation of the plane of incidence. Although this rotation can be accomplished in several ways, a particularly simple method applicable to a free laser beam is to use an optical wedge, spun on a motor, which diverts the beam into a hollow cone of fixed angle. A system of lenses converts this collimated beam cone into a focused spot that traces a circle at the objective's back focal plane. Consequently, a collimated beam with fixed polar angle and spinning azimuthal angle illuminates the sample. If the wedge is spun rapidly, then the different interference patterns at every particular azimuthal incidence angle average out over a single camera exposure to produce an effectively uniform field of illumination. Microsc. Res. Tech., 2006. © 2006 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/55799/1/20334_ftp.pd

    DNA mechanotechnology reveals that integrin receptors apply pN forces in podosomes on fluid substrates

    Get PDF
    International audiencePodosomes are ubiquitous cellular structures important to diverse processes including cell invasion, migration, bone resorption, and immune surveillance. Structurally, podosomes consist of a protrusive actin core surrounded by adhesion proteins. Although podosome protrusion forces have been quantified, the magnitude, spatial distribution, and orientation of the opposing tensile forces remain poorly characterized. Here we use DNA nanotechnology to create probes that measure and manipulate podosome tensile forces with molecular piconewton (pN) resolution. Specifically, Molecular Tension-Fluorescence Lifetime Imaging Microscopy (MT-FLIM) produces maps of the cellular adhesive landscape, revealing ring-like tensile forces surrounding podosome cores. Photocleavable adhesion ligands, breakable DNA force probes, and pharmacological inhibition demonstrate local mechanical coupling between integrin tension and actin protrusion. Thus, podosomes use pN integrin forces to sense and respond to substrate mechanics. This work deepens our understanding of podosome mechanotransduction and contributes tools that are widely applicable for studying receptor mechanics at dynamic interfaces

    Chemical-genetic disruption of clathrin function spares adaptor complex 3-dependent endosome vesicle biogenesis

    Get PDF
    A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3–clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis

    Technique development in super-resolution fluorescence microscopy.

    Full text link
    I present three projects all of which involve innovations in fluorescence microscopy. First I present a microscopy method whereby the angular dependence of a fluorophore's emission pattern near a bare glass surface or metal-coated surface that supports surface plasmon resonance is measured. This technique involves altering the microscope optics to directly record (on a CCD camera) the intensity pattern at the objective's back focal plane. This intensity pattern directly maps the angular emission pattern of fluorescence. The experimental emission profile on both glass and aluminum-coated surfaces is anisotropic with a peak at either the critical angle or both the critical angle and the surface plasmon angle. The observed profiles on both glass and aluminum-coated surfaces are anisotropic and agree well with computer calculations. Second I present a new fluorescence resonance energy transfer (FRET) method based on polarization that determines FRET using data from a single camera exposure, offering better time resolution of dynamic associations. Polarized FRET uses a simultaneous combination of excitation wavelengths from two orthogonally polarized sources, along with an emission channel tri-image splitter outfitted with appropriate polarizers, to concurrently excite and collect fluorescence from free donors, free acceptors, and FRET pairs. The pixel-by-pixel concentrations of all molecules can then be determined. Here I present the theory of polarized FRET and examine its feasibility through both theoretical investigation and experimental confirmation on mixtures of fluorescent proteins expressed in living cells. Third, I present a method for directly measuring the depth and purity of the evanescent field used for fluorophore excitation in total internal reflection fluorescence (TIRF) microscopy. This technique involves microscopic observation of low refractive index, fluorescently labeled, spherical beads in an index-matched solution. With both the 1.45 NA and 1.65 NA objectives on the Olympus microscope the profile of the evanescent field fits well to a double exponential with 90% of the field represented by an exponential with a decay rate close to that expected for a pure evanescent field and 10% of the field represented by an exponential with a much longer decay constant attributed to scattering.Ph.D.Biological SciencesBiophysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/124881/2/3163881.pd

    Imaging with total internal reflection fluorescence microscopy for the cell biologist

    No full text
    Total internal reflection fluorescence (TIRF) microscopy can be used in a wide range of cell biological applications, and is particularly well suited to analysis of the localization and dynamics of molecules and events near the plasma membrane. The TIRF excitation field decreases exponentially with distance from the cover slip on which cells are grown. This means that fluorophores close to the cover slip (e.g. within ~100 nm) are selectively illuminated, highlighting events that occur within this region. The advantages of using TIRF include the ability to obtain high-contrast images of fluorophores near the plasma membrane, very low background from the bulk of the cell, reduced cellular photodamage and rapid exposure times. In this Commentary, we discuss the applications of TIRF to the study of cell biology, the physical basis of TIRF, experimental setup and troubleshooting

    Spatial and temporal dynamics of mitochondrial membrane permeability waves during apoptosis. Biophys

    No full text
    ABSTRACT Change in the permeability of the mitochondrial membrane to proteins (cytochrome c and Smac) and protons is a critical step in apoptosis. Although the time from the induction of apoptosis to the change of mitochondrial permeability is variable over a period of hours, the release of proteins is an ''all or none'' phenomenon that is completed in an individual cell within minutes. Here, using single-cell fluorescence microscopy, we show that the release of cytochrome c from a single mitochondrion occurs in a single step. However, this increased permeability of the outer membrane to cytochrome c propagates throughout the cell as a slower, spatially coordinated wave. The permeability of the outer membrane to Smac propagates with the same spatial pattern but lagging in time. This is followed by a wave of increased permeability of the inner membrane to protons. Only afterward do the mitochondria fission. The spatial dependence of the permeability wave was inhibited by thapsigargin, an inhibitor of the endoplasmic reticulum calcium pumps, but buffering cytosolic calcium had no effect. These results show that the trigger for apoptosis is spatially localized, initiating at one or only a few mitochondria preceding the loss of mitochondrial energetics, and the subsequent temporal propagation of mitochondrial membrane permeability is calcium-dependent

    Spatial and Temporal Dynamics of Mitochondrial Membrane Permeability Waves during Apoptosis

    Get PDF
    Change in the permeability of the mitochondrial membrane to proteins (cytochrome c and Smac) and protons is a critical step in apoptosis. Although the time from the induction of apoptosis to the change of mitochondrial permeability is variable over a period of hours, the release of proteins is an “all or none” phenomenon that is completed in an individual cell within minutes. Here, using single-cell fluorescence microscopy, we show that the release of cytochrome c from a single mitochondrion occurs in a single step. However, this increased permeability of the outer membrane to cytochrome c propagates throughout the cell as a slower, spatially coordinated wave. The permeability of the outer membrane to Smac propagates with the same spatial pattern but lagging in time. This is followed by a wave of increased permeability of the inner membrane to protons. Only afterward do the mitochondria fission. The spatial dependence of the permeability wave was inhibited by thapsigargin, an inhibitor of the endoplasmic reticulum calcium pumps, but buffering cytosolic calcium had no effect. These results show that the trigger for apoptosis is spatially localized, initiating at one or only a few mitochondria preceding the loss of mitochondrial energetics, and the subsequent temporal propagation of mitochondrial membrane permeability is calcium-dependent
    corecore