10,615 research outputs found

    The reverberation signatures of rotating disc winds in active galactic nuclei

    Full text link
    The broad emission lines (BELs) in active galactic nuclei (AGN) respond to ionizing continuum variations. The time and velocity dependence of their response depends on the structure of the broad-line region: its geometry, kinematics and ionization state. Here, we predict the reverberation signatures of BELs formed in rotating accretion disc winds. We use a Monte Carlo radiative transfer and ionization code to predict velocity-delay maps for representative high- (C IV~IV) and low-ionization (Hα\alpha) emission lines in both high- and moderate-luminosity AGN. Self-shielding, multiple scattering and the ionization structure of the outflows are all self-consistently taken into account, while small-scale structure in the outflow is modelled in the micro-clumping approximation. Our main findings are: (1) The velocity-delay maps of smooth/micro-clumped outflows often contain significant negative responses. (2)~The reverberation signatures of disc wind models tend to be rotation dominated and can even resemble the classic "red-leads-blue" inflow signature. (3) Traditional "blue-leads-red" outflow signatures can usually only be observed in the long-delay limit. (4) Our models predict lag-luminosity relationships similar to those inferred from observations, but systematically underpredict the observed centroid delays. (5) The ratio between "virial product" and black hole mass predicted by our models depends on viewing angle. Our results imply that considerable care needs to be taken in interpreting data obtained by observational reverberation mapping campaigns. In particular, basic signatures such as "red-leads-blue", "blue-leads-red" and "blue and red vary jointly" are not always reliable indicators of inflow, outflow or rotation. This may help to explain the perplexing diversity of such signatures seen in observational campaigns to date.Comment: 15 pages, 17 figures, 2 tables. Accepted by MNRAS 20/7/201

    Differential cross section for neutron-proton bremsstrahlung

    Get PDF
    The neutron-proton bremsstrahlung process (np→npγ)(np \to np\gamma) is known to be sensitive to meson exchange currents in the nucleon-nucleon interaction. The triply differential cross section for this reaction has been measured for the first time at the Los Alamos Neutron Science Center, using an intense, pulsed beam of up to 700 MeV neutrons to bombard a liquid hydrogen target. Scattered neutrons were observed at six angles between 12∘^\circ and 32∘^\circ, and the recoil protons were observed in coincidence at 12∘^\circ, 20∘^\circ, and 28∘^\circ on the opposite side of the beam. Measurement of the neutron and proton energies at known angles allows full kinematic reconstruction of each event. The data are compared with predictions of two theoretical calculations, based on relativistic soft-photon and non-relativistic potential models.Comment: 5 pages, 3 figure

    HI ``Tails'' from Cometary Globules in IC1396

    Get PDF
    IC 1396 is a relatively nearby (750 pc), large (>2 deg), HII region ionized by a single O6.5V star and containing bright-rimmed cometary globules. We have made the first arcmin resolution images of atomic hydrogen toward IC 1396, and have found remarkable ``tail''-like structures associated with some of the globules and extending up to 6.5 pc radially away from the central ionizing star. These HI ``tails'' may be material which has been ablated from the globule through ionization and/or photodissociation and then accelerated away from the globule by the stellar wind, but which has since drifted into the ``shadow'' of the globules. This report presents the first results of the Galactic Plane Survey Project recently begun by the Dominion Radio Astrophysical Observatory.Comment: 11 pages, 5 postscript figures, uses aaspp4.sty macros, submitted in uuencoded gzipped tar format, accepted for publication in Astrophysical Journal Letters, colour figures available at http://www.drao.nrc.ca/~schieven/news_sep95/ic1396.htm

    Universal zero-bias conductance for the single electron transistor. II: Comparison with numerical results

    Full text link
    A numerical renormalization-group survey of the zero-bias electrical conductance through a quantum dot embedded in the conduction path of a nanodevice is reported. The results are examined in the light of a recently derived linear mapping between the temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model. A gate potential applied to the conduction electrons is known to change markedly the transport properties of a quantum dot side-coupled to the conduction path; in the embedded geometry here discussed, a similar potential is shown to affect only quantitatively the temperature dependence of the conductance. As expected, in the Kondo regime the numerical results are in excellent agreement with the mapped conductances. In the mixed-valence regime, the mapping describes accurately the low-temperature tail of the conductance. The mapping is shown to provide a unified view of conduction in the single-electron transistor.Comment: Sequel to arXiv:0906.4063. 9 pages with 8 figure

    Asteroseismic Theory of Rapidly Oscillating Ap Stars

    Get PDF
    This paper reviews some of the important advances made over the last decade concerning theory of roAp stars.Comment: 9 pages, 5 figure

    Phase separation and vortex states in binary mixture of Bose-Einstein condensates in the trapping potentials with displaced centers

    Full text link
    The system of two simultaneously trapped codensates consisting of 87Rb^{87}Rb atoms in two different hyperfine states is investigated theoretically in the case when the minima of the trapping potentials are displaced with respect to each other. It is shown that the small shift of the minima of the trapping potentials leads to the considerable displacement of the centers of mass of the condensates, in agreement with the experiment. It is also shown that the critical angular velocities of the vortex states of the system drastically depend on the shift and the relative number of particles in the condensates, and there is a possibility to exchange the vortex states between condensates by shifting the centers of the trapping potentials.Comment: 4 pages, 2 figure

    Stability of vortex solitons in a photorefractive optical lattice

    Full text link
    Stability of off-site vortex solitons in a photorefractive optical lattice is analyzed. It is shown that such solitons are linearly unstable in both the high and low intensity limits. In the high-intensity limit, the vortex looks like a familiar ring vortex, and it suffers oscillatory instabilities. In the low-intensity limit, the vortex suffers both oscillatory and Vakhitov-Kolokolov instabilities. However, in the moderate-intensity regime, the vortex becomes stable if the lattice intensity or the applied voltage is above a certain threshold value. Stability regions of vortices are also determined at typical experimental parameters.Comment: 3 pages, 5 figure

    Observations of Cepheids with the MOST satellite: Contrast between Pulsation Modes

    Get PDF
    The quantity and quality of satellite photometric data strings is revealing details in Cepheid variation at very low levels. Specifically, we observed a Cepheid pulsating in the fundamental mode and one pulsating in the first overtone with the Canadian MOST satellite. The 3.7-d period fundamental mode pulsator (RT Aur) has a light curve that repeats precisely, and can be modeled by a Fourier series very accurately. The overtone pulsator (SZ Tau, 3.1 d period) on the other hand shows light curve variation from cycle to cycle which we characterize by the variations in the Fourier parameters. We present arguments that we are seeing instability in the pulsation cycle of the overtone pulsator, and that this is also a characteristic of the O-C curves of overtone pulsators. On the other hand, deviations from cycle to cycle as a function of pulsation phase follow a similar pattern in both stars, increasing after minimum radius. In summary, pulsation in the overtone pulsator is less stable than that of the fundamental mode pulsator at both long and short timescales.Comment: accepted in MNRAS, 11 pages, 10 figure

    Infrared nonredundant mask imaging at Palomar

    Get PDF
    A program of high resolution infrared imaging at Palomar Observatory, is presented. The use of nonredundant masks both as an imaging technique and as a method of analyzing various aspects of the imaging system are investigated. In particular, the technique is applied to a bright star and binary system using a three-hole mask. The method is useful for understanding certain systematic biases in data, as well as in producing high quality images despite sparse UV coverage. The use of multi-r(o) apertures along with a large bandwidth does not significantly hamper image reconstruction, but provides significant extra coverage in the UV plane
    • …
    corecore