13 research outputs found

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p<0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p<0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p<0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP >5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Image_1_Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates.TIF

    No full text
    Gardnerella species play a key role in the development and recurrence of Bacterial Vaginosis (BV), a common imbalance of the vaginal microbiota. Because of the high rates of BV recurrence reported after treatment with standard of care antibiotics, as well as the emergence of antibiotic-resistant BV, the development of alternative treatment approaches is needed. Bovine lactoferrin, a well studied iron-binding glycoprotein with selective antimicrobial activity, may ameliorate vaginal dysbiosis either alone or in combination with antibiotics. The present study evaluated the antimicrobial resistance/susceptibility profile of seventy-one presumptive G. vaginalis clinical isolates to metronidazole and clindamycin. In addition, the in vitro antimicrobial activity of Metrodora Therapeutics bovine Lactoferrin (MTbLF) against the tested clinical isolates, both alone and in combination with metronidazole and clindamycin, was in depth evaluated using defined-iron culture conditions. All 71 presumptive G. vaginalis clinical isolates exhibited resistance to metronidazole, with MIC values greater than 256 μg/ml. Different susceptibility profiles were detected for clindamycin. In detail, the vast majority of the tested strains (45%), exhibiting MIC lower than 2 μg/ml, were considered sensitive; 18 strains (25%) with MIC higher or equal to 8 μg/ml, were classified as resistant, whereas the remaining 21 (30%) were classified as intermediate. MTbLF was tested in culture medium at different concentrations (32, 16, 8, 4, 2, 1, and 0.5 mg/ml) showing ability to inhibit the growth of the tested presumptive G. vaginalis clinical isolates, including those metronidazole-resistant, in a dose-dependent and not in a strain-dependent manner. MTbLF, at concentrations ranging from 32 to 8 mg/ml, exerted a statistically different antimicrobial activity compared with lower concentrations (4, 2, 1, and 0.5 mg/ml). A synergistic effect between MTbLF (8 and 4 mg/ml) and clindamycin was revealed for all the tested strains. When tested in the absence of other sources of iron, MTbLF did not support the growth of the tested presumptive G. vaginalis clinical isolates. Bovine lactoferrin may be a potential candidate to treat Gardnerella species infection.</p

    Image_3_Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates.JPEG

    No full text
    Gardnerella species play a key role in the development and recurrence of Bacterial Vaginosis (BV), a common imbalance of the vaginal microbiota. Because of the high rates of BV recurrence reported after treatment with standard of care antibiotics, as well as the emergence of antibiotic-resistant BV, the development of alternative treatment approaches is needed. Bovine lactoferrin, a well studied iron-binding glycoprotein with selective antimicrobial activity, may ameliorate vaginal dysbiosis either alone or in combination with antibiotics. The present study evaluated the antimicrobial resistance/susceptibility profile of seventy-one presumptive G. vaginalis clinical isolates to metronidazole and clindamycin. In addition, the in vitro antimicrobial activity of Metrodora Therapeutics bovine Lactoferrin (MTbLF) against the tested clinical isolates, both alone and in combination with metronidazole and clindamycin, was in depth evaluated using defined-iron culture conditions. All 71 presumptive G. vaginalis clinical isolates exhibited resistance to metronidazole, with MIC values greater than 256 μg/ml. Different susceptibility profiles were detected for clindamycin. In detail, the vast majority of the tested strains (45%), exhibiting MIC lower than 2 μg/ml, were considered sensitive; 18 strains (25%) with MIC higher or equal to 8 μg/ml, were classified as resistant, whereas the remaining 21 (30%) were classified as intermediate. MTbLF was tested in culture medium at different concentrations (32, 16, 8, 4, 2, 1, and 0.5 mg/ml) showing ability to inhibit the growth of the tested presumptive G. vaginalis clinical isolates, including those metronidazole-resistant, in a dose-dependent and not in a strain-dependent manner. MTbLF, at concentrations ranging from 32 to 8 mg/ml, exerted a statistically different antimicrobial activity compared with lower concentrations (4, 2, 1, and 0.5 mg/ml). A synergistic effect between MTbLF (8 and 4 mg/ml) and clindamycin was revealed for all the tested strains. When tested in the absence of other sources of iron, MTbLF did not support the growth of the tested presumptive G. vaginalis clinical isolates. Bovine lactoferrin may be a potential candidate to treat Gardnerella species infection.</p

    Image_2_Antimicrobial activity of bovine lactoferrin against Gardnerella species clinical isolates.JPEG

    No full text
    Gardnerella species play a key role in the development and recurrence of Bacterial Vaginosis (BV), a common imbalance of the vaginal microbiota. Because of the high rates of BV recurrence reported after treatment with standard of care antibiotics, as well as the emergence of antibiotic-resistant BV, the development of alternative treatment approaches is needed. Bovine lactoferrin, a well studied iron-binding glycoprotein with selective antimicrobial activity, may ameliorate vaginal dysbiosis either alone or in combination with antibiotics. The present study evaluated the antimicrobial resistance/susceptibility profile of seventy-one presumptive G. vaginalis clinical isolates to metronidazole and clindamycin. In addition, the in vitro antimicrobial activity of Metrodora Therapeutics bovine Lactoferrin (MTbLF) against the tested clinical isolates, both alone and in combination with metronidazole and clindamycin, was in depth evaluated using defined-iron culture conditions. All 71 presumptive G. vaginalis clinical isolates exhibited resistance to metronidazole, with MIC values greater than 256 μg/ml. Different susceptibility profiles were detected for clindamycin. In detail, the vast majority of the tested strains (45%), exhibiting MIC lower than 2 μg/ml, were considered sensitive; 18 strains (25%) with MIC higher or equal to 8 μg/ml, were classified as resistant, whereas the remaining 21 (30%) were classified as intermediate. MTbLF was tested in culture medium at different concentrations (32, 16, 8, 4, 2, 1, and 0.5 mg/ml) showing ability to inhibit the growth of the tested presumptive G. vaginalis clinical isolates, including those metronidazole-resistant, in a dose-dependent and not in a strain-dependent manner. MTbLF, at concentrations ranging from 32 to 8 mg/ml, exerted a statistically different antimicrobial activity compared with lower concentrations (4, 2, 1, and 0.5 mg/ml). A synergistic effect between MTbLF (8 and 4 mg/ml) and clindamycin was revealed for all the tested strains. When tested in the absence of other sources of iron, MTbLF did not support the growth of the tested presumptive G. vaginalis clinical isolates. Bovine lactoferrin may be a potential candidate to treat Gardnerella species infection.</p

    VTX-294 activates the NF-κB pathway via TLR8.

    No full text
    <p>(A) Seven TLR agonists were compared. (B) Representative structures of the TLR7/8 agonists used in this study. HEK-293 cells transfected with (C) human TLR7 and (D) TLR8 and an NF-κB-driven reporter SEAP gene were stimulated for 18–24 h with TLR agonists. The y-axis shows the level of SEAP activity in the Quanti-blue™ assay optical density (OD). The x-axis shows the concentration of each compound in µM. Each data point represents the mean ± SD of OD at 650 nm of triplicate culture wells. VTX-217 (black) is a structurally matched negative control for VTX-744 (gray), VTX-087 (purple) and VTX-294 (red). The IMQ benchmarks R848 and CL075 are denoted in blue and green, respectively.</p

    VTX-294 potently activates human neonatal MoDCs.

    No full text
    <p>Stimulation of neonatal MoDCs for 24 h. Supernatants collected for (A) TNF ELISA and DCs for measurement of (B) HLA-DR and (C) CD86 expression by flow cytometry. Dose dependent surface expression of co-stimulatory markers with MPLA (1, 10, 100 ng/ml), R848 (0.1, 0.3, 10 µM) and VTX-294 (0.1, 0.3, 10 µM) is shown as mean fluorescent intensity (MFI) represented as fold change over vehicle control (mean ± SEM, n = 3); *p<0.05.</p

    Whether tested alone or together with MPLA, VTX-294 has greater cytokine-inducing potency than R848 in human neonatal blood.

    No full text
    <p>Human neonatal WB samples were cultured for 6 h with VTX-294 or R848 (both 0.1 µM) and supernatants recovered for analysis by Multi-Analyte Profiling (MAP), with a modified Human Inflammation MAP v. 1.6-antigen panel. Cytokine responses of 25 analytes are represented in radar plots demonstrating fold-change of (A) 0.1 µM VTX-294 (red) over 0.1 µM R848 (blue), or (B) WB concurrently stimulated in the presence of 100 ng/ml MPLA with 0.1 µM VTX-294 (red) over 100 ng/ml MPLA with 0.1 µM R848 (blue). TNF (C) and IL-1β (D) responses in neonatal WB are shown for VTX-294 (0.1 µM), R848 (0.1 µM) and buffer control added to increasing concentrations of MPLA (0–1,000 ng/ml) are shown. Data are shown as mean ± SEM for n = 4. Statistical significance was determined using paired t-test comparing MPLA/VTX-294 treated compared to MPLA/R848 (C, D); *p<0.05.</p

    VTX 294 induces greater cytokine responses in newborn cord than adult peripheral blood.

    No full text
    <p>Human neonatal and adult blood was cultured for 6 h with MPLA (1, 10, 100, 1000 ng/ml), CL075, R848 and VTX-294 (all 0.1, 1, 10, 100 µM) and supernatants collected for TNF or IL-1β ELISA. Mean ± SEM of agonist-induced cytokine production are shown for n = 5–6. For comparisons between overall groups (newborn vs. adult), Kruskal-Wallis test with Dunn’s post test were applied, with significance denoted as <sup>++</sup>p<0.01, <sup>+++</sup>p<0.001. For analyses at individual doses (newborn vs. adult), unpaired Mann-Whitney test was applied at each concentration and statistical significances are denoted as follows: *p<0.05 and **p<0.01.</p
    corecore