1,884 research outputs found

    The Price Effects of Horizontal Mergers: A Survey

    Get PDF
    This paper surveys the literature on the price effects of horizontal mergers. The majority of mergers that have been examined in the nine studies conducted over the past 22 years resulted in increased prices for both the merging parties and rival firms, at least in the short run. There is some evidence that product prices increase after mergers are announced but before they are consummated.

    Simple Mechanisms for a Subadditive Buyer and Applications to Revenue Monotonicity

    Full text link
    We study the revenue maximization problem of a seller with n heterogeneous items for sale to a single buyer whose valuation function for sets of items is unknown and drawn from some distribution D. We show that if D is a distribution over subadditive valuations with independent items, then the better of pricing each item separately or pricing only the grand bundle achieves a constant-factor approximation to the revenue of the optimal mechanism. This includes buyers who are k-demand, additive up to a matroid constraint, or additive up to constraints of any downwards-closed set system (and whose values for the individual items are sampled independently), as well as buyers who are fractionally subadditive with item multipliers drawn independently. Our proof makes use of the core-tail decomposition framework developed in prior work showing similar results for the significantly simpler class of additive buyers [LY13, BILW14]. In the second part of the paper, we develop a connection between approximately optimal simple mechanisms and approximate revenue monotonicity with respect to buyers' valuations. Revenue non-monotonicity is the phenomenon that sometimes strictly increasing buyers' values for every set can strictly decrease the revenue of the optimal mechanism [HR12]. Using our main result, we derive a bound on how bad this degradation can be (and dub such a bound a proof of approximate revenue monotonicity); we further show that better bounds on approximate monotonicity imply a better analysis of our simple mechanisms.Comment: Updated title and body to version included in TEAC. Adapted Theorem 5.2 to accommodate \eta-BIC auctions (versus exactly BIC

    Heterogeneity in Intra-Monthly Consumption Patterns, Self-Control, and Savings at Retirement

    Get PDF
    Using data from the Continuing Survey of Food Intake by Individuals, this pa- per describes the shape of consumption profiles over the month for Social Security benefit recipients. Individuals with income mostly made up of Social Security ben- efits and who have some savings smooth consumption over the pay period, while individuals with little savings consume 25 percent fewer calories the week before checks are received relative to the week after checks are received. The findings for individuals with little savings are inconsistent with the Permanent Income/Lifecycle Hypothesis, but are consistent with hyperbolic discounting.hyperbolic consumption, caloric consumption, paychecks, Continuing Survey of Food Intake by Individuals.

    Heterogeneity in Intra-Monthly Consumption Patterns, Self-Control, and Savings at Retirement

    Get PDF
    Using data from the Continuing Survey of Food Intake by Individuals, this paper describes the shape of consumption profiles over the month for Social Security benefit recipients. Individuals with income mostly made up of Social Security benefits and who have some savings smooth consumption over the pay period, while individuals with little savings consume 25 percent fewer calories the week before checks are received relative to the week after checks are received. The findings for individuals with little savings are inconsistent with the Permanent Income/Lifecycle Hypothesis, but are consistent with hyperbolic discounting.

    Implementation in Advised Strategies: Welfare Guarantees from Posted-Price Mechanisms When Demand Queries Are NP-Hard

    Get PDF
    State-of-the-art posted-price mechanisms for submodular bidders with mm items achieve approximation guarantees of O((loglogm)3)O((\log \log m)^3) [Assadi and Singla, 2019]. Their truthfulness, however, requires bidders to compute an NP-hard demand-query. Some computational complexity of this form is unavoidable, as it is NP-hard for truthful mechanisms to guarantee even an m1/2εm^{1/2-\varepsilon}-approximation for any ε>0\varepsilon > 0 [Dobzinski and Vondr\'ak, 2016]. Together, these establish a stark distinction between computationally-efficient and communication-efficient truthful mechanisms. We show that this distinction disappears with a mild relaxation of truthfulness, which we term implementation in advised strategies, and that has been previously studied in relation to "Implementation in Undominated Strategies" [Babaioff et al, 2009]. Specifically, advice maps a tentative strategy either to that same strategy itself, or one that dominates it. We say that a player follows advice as long as they never play actions which are dominated by advice. A poly-time mechanism guarantees an α\alpha-approximation in implementation in advised strategies if there exists poly-time advice for each player such that an α\alpha-approximation is achieved whenever all players follow advice. Using an appropriate bicriterion notion of approximate demand queries (which can be computed in poly-time), we establish that (a slight modification of) the [Assadi and Singla, 2019] mechanism achieves the same O((loglogm)3)O((\log \log m)^3)-approximation in implementation in advised strategies

    On Simultaneous Two-player Combinatorial Auctions

    Full text link
    We consider the following communication problem: Alice and Bob each have some valuation functions v1()v_1(\cdot) and v2()v_2(\cdot) over subsets of mm items, and their goal is to partition the items into S,SˉS, \bar{S} in a way that maximizes the welfare, v1(S)+v2(Sˉ)v_1(S) + v_2(\bar{S}). We study both the allocation problem, which asks for a welfare-maximizing partition and the decision problem, which asks whether or not there exists a partition guaranteeing certain welfare, for binary XOS valuations. For interactive protocols with poly(m)poly(m) communication, a tight 3/4-approximation is known for both [Fei06,DS06]. For interactive protocols, the allocation problem is provably harder than the decision problem: any solution to the allocation problem implies a solution to the decision problem with one additional round and logm\log m additional bits of communication via a trivial reduction. Surprisingly, the allocation problem is provably easier for simultaneous protocols. Specifically, we show: 1) There exists a simultaneous, randomized protocol with polynomial communication that selects a partition whose expected welfare is at least 3/43/4 of the optimum. This matches the guarantee of the best interactive, randomized protocol with polynomial communication. 2) For all ε>0\varepsilon > 0, any simultaneous, randomized protocol that decides whether the welfare of the optimal partition is 1\geq 1 or 3/41/108+ε\leq 3/4 - 1/108+\varepsilon correctly with probability >1/2+1/poly(m)> 1/2 + 1/ poly(m) requires exponential communication. This provides a separation between the attainable approximation guarantees via interactive (3/43/4) versus simultaneous (3/41/108\leq 3/4-1/108) protocols with polynomial communication. In other words, this trivial reduction from decision to allocation problems provably requires the extra round of communication

    Condorcet-Consistent and Approximately Strategyproof Tournament Rules

    Get PDF
    We consider the manipulability of tournament rules for round-robin tournaments of nn competitors. Specifically, nn competitors are competing for a prize, and a tournament rule rr maps the result of all (n2)\binom{n}{2} pairwise matches (called a tournament, TT) to a distribution over winners. Rule rr is Condorcet-consistent if whenever ii wins all n1n-1 of her matches, rr selects ii with probability 11. We consider strategic manipulation of tournaments where player jj might throw their match to player ii in order to increase the likelihood that one of them wins the tournament. Regardless of the reason why jj chooses to do this, the potential for manipulation exists as long as Pr[r(T)=i]\Pr[r(T) = i] increases by more than Pr[r(T)=j]\Pr[r(T) = j] decreases. Unfortunately, it is known that every Condorcet-consistent rule is manipulable (Altman and Kleinberg). In this work, we address the question of how manipulable Condorcet-consistent rules must necessarily be - by trying to minimize the difference between the increase in Pr[r(T)=i]\Pr[r(T) = i] and decrease in Pr[r(T)=j]\Pr[r(T) = j] for any potential manipulating pair. We show that every Condorcet-consistent rule is in fact 1/31/3-manipulable, and that selecting a winner according to a random single elimination bracket is not α\alpha-manipulable for any α>1/3\alpha > 1/3. We also show that many previously studied tournament formats are all 1/21/2-manipulable, and the popular class of Copeland rules (any rule that selects a player with the most wins) are all in fact 11-manipulable, the worst possible. Finally, we consider extensions to match-fixing among sets of more than two players.Comment: 20 page
    corecore