1,345 research outputs found

    Reduced Late Bombardment on Rocky Exoplanets around M Dwarfs

    Get PDF
    Ocean-vaporizing impacts of chemically reduced planetesimals onto the early Earth have been suggested to catalyze atmospheric production of reduced nitrogen compounds and trigger prebiotic synthesis despite an oxidized lithosphere. While geochemical evidence supports a dry, highly reduced late veneer on Earth, the composition of late-impacting debris around lower-mass stars is subject to variable volatile loss as a result of their hosts’ extended pre-main-sequence phase. We perform simulations of late-stage planet formation across the M-dwarf mass spectrum to derive upper limits on reducing bombardment epochs in Hadean-analog environments. We contrast the solar system scenario with varying initial volatile distributions due to extended primordial runaway greenhouse phases on protoplanets and the desiccation of smaller planetesimals by internal radiogenic heating. We find a decreasing rate of late-accreting reducing impacts with decreasing stellar mass. Young planets around stars „0.4 Me experience no impacts of sufficient mass to generate prebiotically relevant concentrations of reduced atmospheric compounds once their stars have reached the main sequence. For M-dwarf planets to not exceed Earth- like concentrations of volatiles, both planetesimals, and larger protoplanets must undergo extensive devolatilization processes and can typically emerge from long-lived magma ocean phases with sufficient atmophile content to outgas secondary atmospheres. Our results suggest that transiently reducing surface conditions on young rocky exoplanets are favored around FGK stellar types relative to M dwarfs

    Simple Syllabic Calls Accompany Discrete Behavior Patterns in Captive Pteronotus parnellii: An Illustration of the Motivation-Structure Hypothesis

    Get PDF
    Mustached bats, Pteronotus parnellii, are highly social and vocal. Individuals of this species roost in tight clusters, and emit an acoustically rich repertoire of calls whose behavioral significance is largely unknown. We recorded their social and vocal behaviors within a colony housed under semi-natural conditions. We also quantified the spatial spread of each bat's roosting location and discovered that this was relatively fixed and roughly confined to an individual's body width. The spatial precision in roosting was accompanied by an equally remarkable match between specific vocalizations and well-timed, discrete, identifiable postures/behaviors, as revealed by logistic regression analysis. The bodily behaviors included crouching, marking, yawning, nipping, flicking, fighting, kissing, inspecting, and fly-bys. Two echolocation-like calls were used to maintain spacing in the colony, two noisy broadband calls were emitted during fights, two tonal calls conveyed fear, and another tonal call signaled appeasement. Overall, the results establish that mustached bats exhibit complex social interactions common to other social mammals. The correspondence of relatively low frequency and noisy, broadband calls with aggression, and of tonal, high frequency calls with fear supports Morton's Motivation-Structure hypothesis, and establishes a link between motivation and the acoustic structure of social calls emitted by mustached bats

    Adaptation of a Community Health Advisor Intervention to Increase Colorectal Cancer Screening Among African Americans in the Southern United States

    Get PDF
    Community health advisor (CHA) interventions increase colorectal cancer (CRC) screening rates. Focus groups and learner verification were used to adapt National Cancer Institute CRC screening educational materials for delivery by a CHA to African American community health center patients. Such academic-community collaboration improves adoption of evidence-based interventions. This short article describes the adaptation of an evidence-based cancer education intervention for implementation in an African American community

    Constellations of co-orbital planets: horseshoe dynamics, long-term stability, transit timing variations, and potential as SETI beacons

    Get PDF
    Co-orbital systems contain two or more bodies sharing the same orbit around a planet or star. The best-known flavors of co-orbital systems are tadpoles (in which two bodies' angular separations oscillate about the L4/L5 Lagrange points 6060^\circ apart) and horseshoes (with two bodies periodically exchanging orbital energy to trace out a horseshoe shape in a co-rotating frame). Here, we use N-body simulations to explore the parameter space of many-planet horseshoe systems. We show that up to 24 equal-mass, Earth-mass planets can share the same orbit at 1 au, following a complex pattern in which neighboring planets undergo horseshoe oscillations. We explore the dynamics of horseshoe constellations, and show that they can remain stable for billions of years and even persist through their stars' post-main sequence evolution. With sufficient observations, they can be identified through their large-amplitude, correlated transit timing variations. Given their longevity and exotic orbital architectures, horseshoe constellations may represent potential SETI beacons.Comment: 10 pages, 10 figures. Published in MNRAS. YouTube playlist with animations of horseshoe constellation systems here: https://www.youtube.com/playlist?list=PLelMZVM3ka3F335LGLxkxrD1ieiLJYQ5N . Blog post here: https://planetplanet.net/2023/04/20/constellations-of-co-orbital-planets

    Survival and dynamics of rings of co-orbital planets under perturbations

    Get PDF
    In co-orbital planetary systems, two or more planets share the same orbit around their star. Here we test the dynamical stability of co-orbital rings of planets perturbed by outside forces. We test two setups: i) 'stationary' rings of planets that, when unperturbed, remain equally-spaced along their orbit; and ii) horseshoe constellation systems, in which planets are continually undergoing horseshoe librations with their immediate neighbors. We show that a single rogue planet crossing the planets' orbit more massive than a few lunar masses (0.01-0.04 Earth masses) systematically disrupts a co-orbital ring of 6, 9, 18, or 42 Earth-mass planets located at 1 au. Stationary rings are more resistant to perturbations than horseshoe constellations, yet when perturbed they can transform into stable horseshoe constellation systems. Given sufficient time, any co-orbital ring system will be perturbed into either becoming a horseshoe constellation or complete destabilization.Comment: 5 pages, 4 figures. Re-submitted to MNRAS. Blog post about co-orbital constellations here: https://planetplanet.net/2023/04/20/constellations-of-co-orbital-planets

    A race against the clock: Constraining the timing of cometary bombardment relative to Earth's growth

    Full text link
    Comets are considered a potential source of inner solar system volatiles, but the timing of this delivery relative to that of Earth's accretion is still poorly understood. Measurements of xenon isotopes in comet 67P/Churyumov-Gerasimenko revealed that comets partly contributed to the Earth's atmosphere. However, there is no conclusive evidence of a significant cometary component in the Earth's mantle. These geochemical constraints would favour a contribution of comets mainly occurring after the last stages of Earth's formation. Here, we evaluate whether dynamical simulations satisfy these constraints in the context of an Early Instability model. We perform dynamical simulations of the solar system, calculate the probability of collision between comets and Earth analogs component embryos through time and estimate the total cometary mass accreted in Earth analogs as a function of time. While our results are in excellent agreement with geochemical constraints, we also demonstrate that the contribution of comets on Earth might have been delayed with respect to the timing of the instability, due to a stochastic component of the bombardment. More importantly, we show that it is possible that enough cometary mass has been brought to Earth after it had finished forming so that the xenon constraint is not necessarily in conflict with an Early Instability scenario. However, it appears very likely that a few comets were delivered to Earth early in its accretion history, thus contributing to the mantle's budget. Finally, we compare the delivery of cometary material on Earth to Venus and Mars. These results emphasize the stochastic nature of the cometary bombardment in the inner solar system.Comment: 26 pages, 12 figure

    Born extra-eccentric: A broad spectrum of primordial configurations of the gas giants that match their present-day orbits

    Full text link
    In a recent paper we proposed that the giant planets' primordial orbits may have been eccentric (~0.05), and used a suite of dynamical simulations to show outcomes of the giant planet instability that are consistent with their present-day orbits. In this follow-up investigation, we present more comprehensive simulations incorporating superior particle resolution, longer integration times, and eliminating our prior means of artificially forcing instabilities to occur at specified times by shifting a planets' position in its orbit. While we find that the residual phase of planetary migration only minimally alters the the planets' ultimate eccentricities, our work uncovers several intriguing outcomes in realizations where Jupiter and Saturn are born with extremely large eccentricities (~0.10 and ~0.25, respectively). In successful simulations, the planets' orbits damp through interactions with the planetesimal disk prior to the instability, thus loosely replicating the initial conditions considered in our previous work. Our results therefore suggest an even wider range of plausible evolutionary pathways are capable of replicating Jupiter and Saturn's modern orbital architecture.Comment: 12 pages, 3 figures, 2 tables, accepted for publication in Icaru

    The European Prevention of Alzheimer's Dementia Programme: An Innovative Medicines Initiative-funded partnership to facilitate secondary prevention of Alzheimer's disease dementia

    Get PDF
    INTRODUCTION: Tens of millions of people worldwide will develop Alzheimer's disease (AD), and only by intervening early in the preclinical disease can we make a fundamental difference to the rates of late-stage disease where clinical symptoms and societal burden manifest. However, collectively utilizing data, samples, and knowledge amassed by large-scale projects such as the Innovative Medicines Initiative (IMI)-funded European Prevention of Alzheimer's Dementia (EPAD) program will enable the research community to learn, adapt, and implement change. METHOD: In the current article, we define and discuss the substantial assets of the EPAD project for the scientific community, patient population, and industry, describe the EPAD structure with a focus on how the public and private sector interacted and collaborated within the project, reflect how IMI specifically supported the achievements of the above, and conclude with a view for future. RESULTS: The EPAD project was a €64-million investment to facilitate secondary prevention of AD dementia research. The project recruited over 2,000 research participants into the EPAD longitudinal cohort study (LCS) and included over 400 researchers from 39 partners. The EPAD LCS data and biobank are freely available and easily accessible via the Alzheimer's Disease Data Initiative's (ADDI) AD Workbench platform and the University of Edinburgh's Sample Access Committee. The trial delivery network established within the EPAD program is being incorporated into the truly global offering from the Global Alzheimer's Platform (GAP) for trial delivery, and the almost 100 early-career researchers who were part of the EPAD Academy will take forward their experience and learning from EPAD to the next stage of their careers. DISCUSSION: Through GAP, IMI-Neuronet, and follow-on funding from the Alzheimer's Association for the data and sample access systems, the EPAD assets will be maintained and, as and when sponsors seek a new platform trial to be established, the learnings from EPAD will ensure that this can be developed to be even more successful than this first pan-European attempt
    corecore