264 research outputs found

    Electroweak Baryogenesis with Vector-like Leptons and Scalar Singlets

    Get PDF
    We investigate the viability of electroweak baryogenesis in a model with a first order electroweak phase transition induced by the addition of two gauge singlet scalars. A vector-like lepton doublet is introduced in order to provide CP violating interactions with the singlets and Standard Model leptons, and the asymmetry generation dynamics are examined using the vacuum expectation value insertion approximation. We find that such a model is readily capable of generating sufficient baryon asymmetry while satisfying electron electric dipole moment and collider phenomenology constraints.Comment: 38 pages, 8 figures. Citations added. Benchmarks, figures and tables updated, error fixed in calculations. Matches version published in JHE

    Outcomes of Shoulder Arthroplasty Performed for Postinfectious Arthritis.

    Get PDF
    Background: The purpose of this study was to evaluate the functional outcomes, infection rate, and complications associated with shoulder arthroplasty for sequelae of prior septic arthritis. Methods: This is a retrospective cohort study of 17 patients who underwent shoulder arthroplasty for sequelae of septic arthritis. Patients were analyzed for patient-reported outcomes, complications, and reoperations. Results: The 17 patients in this cohort were an average age of 65.4 ± 12.2 years old, were 58.8% male, and had an average body mass index of 27.9 ± 4.1 kg/m Conclusions: Shoulder arthroplasty after septic arthritis had inconsistent functional outcomes and high complication rates but no reinfection

    Antibiotic Spacers in Shoulder Arthroplasty: Comparison of Stemmed and Stemless Implants.

    Get PDF
    Background: Antibiotic spacers in shoulder periprosthetic joint infection deliver antibiotics locally and provide temporary stability. The purpose of this study was to evaluate differences between stemmed and stemless spacers. Methods: All spacers placed from 2011 to 2013 were identified. Stemless spacers were made by creating a spherical ball of cement placed in the joint space. Stemmed spacers had some portion in the humeral canal. Operative time, complications, reimplantation, reinfection, and range of motion were analyzed. Results: There were 37 spacers placed: 22 were stemless and 15 were stemmed. The stemless spacer population was older (70.9 ± 7.8 years vs. 62.8 ± 8.4 years, p = 0.006). The groups had a similar percentage of each gender (stemless group, 45% male vs. stemmed group, 40% male; p = 0.742), body mass index (stemless group, 29.1 ± 6.4 kg/m2 vs. stemmed group, 31.5 ± 8.3 kg/m2; p = 0.354) and Charlson Comorbidity Index (stemless group, 4.2 ± 1.2 vs. stemmed group, 4.2 ± 1.7; p = 0.958). Operative time was similar (stemless group, 127.5 ± 37.1 minutes vs. stemmed group, 130.5 ± 39.4 minutes). Two stemless group patients had self-resolving radial nerve palsies. Within the stemless group, 15 of 22 (68.2%) underwent reimplantation with 14 of 15 having forward elevation of 109° ± 23°. Within the stemmed group, 12 of 15 (80.0%, p = 0.427) underwent reimplantation with 8 of 12 having forward elevation of 94° ± 43° (range, 30° to 150°; p = 0.300). Two stemmed group patients had axillary nerve palsies, one of which self-resolved but the other did not. One patient sustained dislocation of reverse shoulder arthroplasty after reimplantation. One stemless group patient required an open reduction and glenosphere exchange of dislocated reverse shoulder arthroplasty at 6 weeks after reimplantation. Conclusions: Stemmed and stemless spacers had similar clinical outcomes. When analyzing all antibiotic spacers, over 70% were converted to revision arthroplasties. The results of this study do not suggest superiority of either stemmed or stemless antibiotic spacers

    A Real Triplet-Singlet Extended Standard Model: Dark Matter and Collider Phenomenology

    Get PDF
    We examine the collider and dark matter phenomenology of the Standard Model extended by a hypercharge-zero SU(2) triplet scalar and gauge singlet scalar. In particular, we study the scenario where the singlet and triplet are both charged under a single Z2\mathbb{Z}_2 symmetry. We find that such an extension is capable of generating the observed dark matter density, while also modifying the collider phenomenology such that the lower bound on the mass of the triplet is smaller than in minimal triplet scalar extensions to the Standard Model. A high triplet mass is in tension with the parameter space that leads to novel electroweak phase transitions in the early universe. Therefore, the lower triplet masses that are permitted in this extended model are of particular importance for the prospects of successful electroweak baryogenesis and the generation of gravitational waves from early universe phase transitions.Comment: 30 pages, 8 figures. Citations and related discussion adde

    Two-Step Electroweak Symmetry-Breaking: Theory Meets Experiment

    Get PDF
    We study the phenomenology of a hypercharge-zero SU(2) triplet scalar whose existence is motivated by two-step electroweak symmetry-breaking. We consider both the possibility that the triplets are stable and contribute to the dark matter density, or that they decay via mixing with the standard model Higgs boson. The former is constrained by disappearing charged track searches at the LHC and by dark matter direct detection experiments, while the latter is constrained by existing multilepton collider searches. We find that a two-step electroweak phase transition involving a stable triplet with a negative quadratic term is ruled out by direct detection searches, while an unstable triplet with a mass less than 230 GeV230\ \mathrm{GeV} is excluded at 95%95\% confidence level.Comment: 31 pages, 10 figures. Updated to match version published in JHE

    Two-step electroweak symmetry-breaking: theory meets experiment

    Get PDF
    We study the phenomenology of a hypercharge-zero SU (2) triplet scalar whose existence is motivated by two-step electroweak symmetry-breaking. We consider both the possibility that the triplets are stable and contribute to the dark matter density, or that they decay via mixing with the standard model Higgs boson. The former is constrained by disappearing charged track searches at the LHC and by dark matter direct detection experiments, while the latter is constrained by existing multilepton collider searches. We find that a two-step electroweak phase transition involving a stable triplet with a negative quadratic term is ruled out by direct detection searches, while an unstable triplet with a mass less than 230 GeV is excluded at 95% confidence level

    A pilot feasibility study of daily rTMS to modify corticospinal excitability during lower limb immobilization

    Get PDF
    Short term immobilization of the lower limb is associated with increased corticospinal excitability at 24 hours post cast removal. We wondered whether daily stimulation of the motor cortex might decrease brain reorganization during casting. We tested the feasibility of this approach. Using transcranial magnetic stimulation (TMS), resting motor threshold and recruitment curves were obtained at baseline in 6 healthy participants who then had leg casts placed for 10 days. On 7 of the 10 days subjects received 20 minutes of 1 Hz repetitive TMS (rTMS). TMS measures were then recorded immediately after and 24 hours post cast removal. Four of 6 subjects completed the study. At the group level there were no changes in excitability following cast removal. At the individual level, two participants did not show any change, 1 participant had higher and one lower excitability 24 hours after cast removal. Daily rTMS over motor cortex is feasible during casting and may modify neuroplastic changes occurring during limb disuse. A prospective double blind study is warranted to test whether daily rTMS might improve outcome in subjects undergoing casting, and perhaps in other forms of limb disuse such as those following brain injury or weightlessness in space flight
    corecore