2 research outputs found

    The development of a visualisation tool for acquired motorsport data

    Get PDF
    Data acquisition and analysis are an intrinsic part of motorsport, helping a race team objectively evaluate the performance of both their car and driver. Over time, data acquisition has become almost universally employed through all levels of racing. While large teams in the sport’s highest ranks have many resources to derive answers from these data, users in more minor ‘stepping stone’ categories often find themselves unable to successfully exploit the full potential of the information gathered because of its volume and their limited resources. Further to issues associated with the volume of data, recent trends in racing have seen cuts to the time available for driver and car testing through all levels of the sport to reduce escalating competition costs. While users are faced with ever more data and less time in which to extract useful information, the tools provided by commercial analysis packages have shown little development. This article describes the investigation into a new three-dimensional graphical display method, which aims to help the user more rapidly assimilate acquired motorsport data to the race car producing it. The first two preliminary stages of development of this system are presented, demonstrating the ability of the system to operate with two levels of complexity, which might be considered to suitably represent different levels of user. Together, results from both demonstrate the system’s potential for further development as a useful tool for accelerating a race team’s analysis of acquired data

    Evaluation of in-cylinder endoscopic two-colour soot pyrometry of diesel combustion

    No full text
    Flame temperature and soot concentration imaging was performed using endoscopic two-colour (2C) soot pyrometry to investigate the characteristics of in-cylinder diesel engine combustion processes and pro- vide validation data for engine simulation and design. To appropriately interpret the 2C image results, this paper focuses on the uncertainty and challenges of the technique, the line-of-sight nature of the measurement and presents comparable information for validation exercises. A line-of-sight flame light intensity model was created to explore how the temperature T and soot concentration KL measured by the 2C technique can relate to non-uniform flame temperature and soot distributions. It was found that T and KL measured from the 2C technique were likely to relate differently to the actual distribution de- pending on where in the flame the measurement was taken and on assumptions made about the flame spatial structure. Assessment has been made of the range of the maximum and minimum flame tem- peratures (assumed to correspond to reaction zone temperature and flame centreline respectively) that are consistent with measured temperature T and soot concentration KL . The analysis of uncertainties, flame temperature and soot distribution along the line-of-sight, and image averaging allows for better quantitative comparison of 2C soot pyrometry images to CFD simulation, which increases confidence in simulation-driven engine development.</p
    corecore