18 research outputs found

    Pore-Scale Behavior of Darcy Flow in Static and Dynamic Porous Media

    Get PDF
    Lattice-Boltzmann numerical simulations are conducted to explore the pore-scale flow behavior inside modeled porous media over the Darcy regime. We use static (fixed) and dynamic (rotating) particles to form the porous media. The pore flow behavior (tortuosity) is found to be constant in the static medium within the Darcy range. However, the study reveals distinctively different flow structures in the dynamic case depending on the macroscopic Darcy flow rate and the level of internal energy imposed to the system (via the angular velocity of particles). With small Darcy flow rates, tortuous flow develops with vortices occupying a large portion of the pore space but contributing little to the net flow. The formation of the vortices is linked to spatial fluctuations of local pore fluid pressure. As the Darcy flow rate (and, hence, the global fluid pressure gradient across the medium) increases, the effect of local pressure fluctuations diminishes, and the flow becomes more channelized. Despite the large variations of the pore-scale flow characteristics in the dynamic porous media, the macroscopic flow satisfies Darcy's law with an invariant permeability. The applicability of Darcy's law is proven for an internally disturbed flow through porous media. The results raise questions concerning the generality of the models describing the Darcy flow as being channelized with constant (structure-dependent) tortuosity and how the internal sources of energy imposed to the porous media flow are considered

    Direct Measurement of Crossover and Interfacial Resistance of Ion-Exchange Membranes in All-Vanadium Redox Flow Batteries

    No full text
    Among various components commonly used in redox flow batteries (RFBs), the separator plays a significant role, influencing resistance to current as well as capacity decay via unintended crossover. It is well-established that the ohmic overpotential is dominated by the membrane and interfacial resistance in most aqueous RFBs. The ultimate goal of engineering membranes is to improve the ionic conductivity while keeping crossover at a minimum. One of the major issues yet to be addressed is the contribution of interfacial phenomena in the influence of ionic and water transport through the membrane. In this work, we have utilized a novel experimental system capable of measuring the ionic crossover in real-time to quantify the permeability of ionic species. Specifically, we have focused on quantifying the contributions from the interfacial resistance to ionic crossover. The trade-off between the mass and ionic transport impedance caused by the interface of the membranes has been addressed. The MacMullin number has been quantified for a series of electrolyte configurations and a correlation between the ionic conductivity of the contacting electrolyte and the Nafion® membrane has been established. The performance of individual ion-exchange membranes along with a stack of various separators have been explored. We have found that utilizing a stack of membranes is significantly beneficial in reducing the electroactive species crossover in redox flow batteries compared to a single membrane of the same fold thickness. For example, we have demonstrated that the utilization of five layers of Nafion® 211 membrane reduces the crossover by 37% while only increasing the area-specific resistance (ASR) by 15% compared to a single layer Nafion® 115 membrane. Therefore, the influence of interfacial impedance in reducing the vanadium ion crossover is substantially higher compared to a corresponding increase in ASR, indicating that mass and ohmic interfacial resistances are dissimilar. We have expanded our analysis to a combination of commercially available ion-exchange membranes and provided a design chart for membrane selection based on the application of interest (short duration/high-performance vs. long-term durability). The results of this study provide a deeper insight into the optimization of all-vanadium redox flow batteries (VRFBs)

    Computational and Experimental Study of Convection in a Vanadium Redox Flow Battery Strip Cell Architecture

    No full text
    The impact of convection on electrochemical performance, performance distribution, and local pressure drop is investigated via simple strip cell architecture, a cell with a single straight channel. Various channel depths (0.25, 0.5, 1, 2.5 mm) and flow rates (10–50 mL min−1 cm−2) are employed to induce a wide range of electrolyte velocities within the channel and electrode. Computational flow simulation is utilized to assess velocity and pressure distributions; experimentally measured in situ current distribution is quantified for the cell. Although the total current in the cell is directly proportional to electrolyte velocity in the electrode, there is no correlation detected between electrolyte velocity in the channel and the total current. It is found that the maximum achievable current is limited by diffusion mass transport resistance between the liquid electrolyte and the electrode surfaces at the pore level. Low electrolyte velocity induces large current gradients from inlet to outlet; conversely, high electrolyte velocity exhibits relatively uniform current distribution down the channel. Large current gradients are attributed to local concentration depletion in the electrode since the velocity distribution down the channel is uniform. Shallow channel configurations are observed to successfully compromise between convective flow in the electrode and the overall pressure drop
    corecore