70 research outputs found

    Macrophage/fibroblast coculture induces macrophage inflammatory protein‐1a production mediated by intercellular adhesion molecule‐1 and oxygen radicals

    Full text link
    This study examined the cell‐to‐cell interaction between fibroblasts and macrophages as a possible contributor to the chronic inflammatory state. In a coculture system, consisting of macrophages layered over confluent fibroblasts, there was a significant increase in macrophage inflammatory protein 1α (MIP‐1α) compared with control cultures. ICAM‐1 adhesion was identified as an important stimulus of MIP‐1α production by using ICAM‐1‐specific monoclonal antibodies. Furthermore, fibroblasts from ICAM‐1 knockout mice induced significantly less MIP‐1α production from peritoneal macrophages when compared to control fibroblasts. In addition, it appeared that oxygen radicals functioned as activating molecules during cellular interaction and production of MIP‐1α, as the addition of the antioxidant N‐acetylcysteine (NAC) prevented MIP‐1α secretion. Thus, the ICAM‐1 and oxygen radical‐mediated induction of MIP‐1α associated with a macrophage/fibroblast coculture system provides one possible mechanism by which immune/inflammatory cell interactions may augment chemokine production and exacerbate chronic inflammatory diseases. J. Leukoc. Biol. 64: 636–641; 1998.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141120/1/jlb0636.pd

    Amino Acids Rather than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells

    Get PDF
    Cells must duplicate their mass in order to proliferate. Glucose and glutamine are the major nutrients consumed by proliferating mammalian cells, but the extent to which these and other nutrients contribute to cell mass is unknown. We quantified the fraction of cell mass derived from different nutrients and found that the majority of carbon mass in cells is derived from other amino acids, which are consumed at much lower rates than glucose and glutamine. While glucose carbon has diverse fates, glutamine contributes most to protein, suggesting that glutamine's ability to replenish tricarboxylic acid cycle intermediates (anaplerosis) is primarily used for amino acid biosynthesis. These findings demonstrate that rates of nutrient consumption are indirectly associated with mass accumulation and suggest that high rates of glucose and glutamine consumption support rapid cell proliferation beyond providing carbon for biosynthesis.National Institutes of Health (U.S.) (Grant U54CA143874

    An Engineered Bivalent Neuregulin Protects Against Doxorubicin-Induced Cardiotoxicity With Reduced Proneoplastic Potential

    Get PDF
    Background—Doxorubicin (DOXO) is an effective anthracycline chemotherapeutic, but its use is limited by cumulative dose-dependent cardiotoxicity. Neuregulin-1ÎČ is an ErbB receptor family ligand that is effective against DOXO-induced cardiomyopathy in experimental models but is also proneoplastic. We previously showed that an engineered bivalent neuregulin-1ÎČ (NN) has reduced proneoplastic potential in comparison with the epidermal growth factor–like domain of neuregulin-1ÎČ (NRG), an effect mediated by receptor biasing toward ErbB3 homotypic interactions uncommonly formed by native neuregulin-1ÎČ. Here, we hypothesized that a newly formulated, covalent NN would be cardioprotective with reduced proneoplastic effects in comparison with NRG. Methods and Results—NN was expressed as a maltose-binding protein fusion in Escherichia coli. As established previously, NN stimulated antineoplastic or cytostatic signaling and phenotype in cancer cells, whereas NRG stimulated proneoplastic signaling and phenotype. In neonatal rat cardiomyocytes, NN and NRG induced similar downstream signaling. NN, like NRG, attenuated the double-stranded DNA breaks associated with DOXO exposure in neonatal rat cardiomyocytes and human cardiomyocytes derived from induced pluripotent stem cells. NN treatment significantly attenuated DOXO-induced decrease in fractional shortening as measured by blinded echocardiography in mice in a chronic cardiomyopathy model (57.7±0.6% versus 50.9±2.6%, P=0.004), whereas native NRG had no significant effect (49.4±3.7% versus 50.9±2.6%, P=0.813). Conclusions—NN is a cardioprotective agent that promotes cardiomyocyte survival and improves cardiac function in DOXO-induced cardiotoxicity. Given the reduced proneoplastic potential of NN versus NRG, NN has translational potential for cardioprotection in patients with cancer receiving anthracyclines.Stem Cell and Regenerative Biolog

    Exercise induces new cardiomyocyte generation in the adult mammalian heart.

    Get PDF
    Loss of cardiomyocytes is a major cause of heart failure, and while the adult heart has a limited capacity for cardiomyogenesis, little is known about what regulates this ability or whether it can be effectively harnessed. Here we show that 8 weeks of running exercise increase birth of new cardiomyocytes in adult mice (~4.6-fold). New cardiomyocytes are identified based on incorporation of 15N-thymidine by multi-isotope imaging mass spectrometry (MIMS) and on being mononucleate/diploid. Furthermore, we demonstrate that exercise after myocardial infarction induces a robust cardiomyogenic response in an extended border zone of the infarcted area. Inhibition of miR-222, a microRNA increased by exercise in both animal models and humans, completely blocks the cardiomyogenic exercise response. These findings demonstrate that cardiomyogenesis can be activated by exercise in the normal and injured adult mouse heart and suggest that stimulation of endogenous cardiomyocyte generation could contribute to the benefits of exercise

    Braveheart, a Long Noncoding RNA Required for Cardiovascular Lineage Commitment

    Get PDF
    Long noncoding RNAs (lncRNAs) are often expressed in a development-specific manner, yet little is known about their roles in lineage commitment. Here, we identified Braveheart (Bvht), a heart-associated lncRNA in mouse. Using multiple embryonic stem cell (ESC) differentiation strategies, we show that Bvht is required for progression of nascent mesoderm toward a cardiac fate. We find that Bvht is necessary for activation of a core cardiovascular gene network and functions upstream of mesoderm posterior 1 (MesP1), a master regulator of a common multipotent cardiovascular progenitor. We also show that Bvht interacts with SUZ12, a component of polycomb-repressive complex 2 (PRC2), during cardiomyocyte differentiation, suggesting that Bvht mediates epigenetic regulation of cardiac commitment. Finally, we demonstrate a role for Bvht in maintaining cardiac fate in neonatal cardiomyocytes. Together, our work provides evidence for a long noncoding RNA with critical roles in the establishment of the cardiovascular lineage during mammalian development.Damon Runyon Cancer Research Foundation (DRG 2032-09)Damon Runyon Cancer Research Foundation (DFS 04-12)European Molecular Biology Organization (Long-term Fellowship)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098179)National Heart, Lung, and Blood Institute. Bench to Bassinet Program (U01HL098188)Smith Family FoundationPew Charitable Trusts. Program in the Biomedical Science

    Bone marrow-derived cell therapy stimulates endogenous cardiomyocyte progenitors and promotes cardiac repair

    Get PDF
    Cell therapy can improve cardiac function in animals and humans after injury, but the mechanism is unclear. We performed cell therapy experiments in genetically engineered mice that permanently express green fluorescent protein (GFP) only in cardiomyocytes after a pulse of 4-OH-tamoxifen. Myocardial infarction diluted the GFP+ cardiomyocyte pool, indicating refreshment by non-GFP+ progenitors. Cell therapy with bone marrow-derived c-kit+ cells, but not mesenchymal stem cells, further diluted the GFP+ pool, consistent with c-kit+ cell-mediated augmentation of cardiomyocyte progenitor activity. This effect could not be explained by transdifferentiation to cardiomyocytes by exogenously delivered c-kit+ cells or by cell fusion. Therapy with c-kit + cells but not mesenchymal stem cells improved cardiac function. These findings suggest that stimulation of endogenous cardiogenic progenitor activity is a critical mechanism of cardiac cell therapy. © 2011 Elsevier Inc
    • 

    corecore