7 research outputs found

    Biophysical Modulation of Mesenchymal Stem Cell Differentiation in the Context of Skeletal Repair

    No full text
    A prominent feature of the skeleton is its ability to remodel in response to biophysical stimuli and to repair under varied biophysical conditions. This allows the skeleton considerable adaptation to meet its physiological roles of stability and movement. Skeletal cells and their mesenchymal precursors exist in a native environment rich with biophysical signals, and they sense and respond to those signals to meet organismal demands of the skeleton. While mechanical strain is the most recognized of the skeletal biophysical stimuli, signaling phenomena also include fluid flow, hydrostatic pressure, shear stress, and ion-movement-related electrokinetic phenomena including, prominently, streaming potentials. Because of the complex interactions of these electromechanical signals, it is difficult to isolate the significance of each. The application of external electrical and electromagnetic fields allows an exploration of the effects of these stimuli on cell differentiation and extra-cellular matrix formation in the absence of mechanical strain. This review takes a distinctly translational approach to mechanistic and preclinical studies of differentiation and skeletal lineage commitment of mesenchymal cells under biophysical stimulation. In vitro studies facilitate the examination of isolated cellular responses while in vivo studies permit the observation of cell differentiation and extracellular matrix synthesis

    Biophysical Modulation of Mesenchymal Stem Cell Differentiation in the Context of Skeletal Repair

    No full text
    A prominent feature of the skeleton is its ability to remodel in response to biophysical stimuli and to repair under varied biophysical conditions. This allows the skeleton considerable adaptation to meet its physiological roles of stability and movement. Skeletal cells and their mesenchymal precursors exist in a native environment rich with biophysical signals, and they sense and respond to those signals to meet organismal demands of the skeleton. While mechanical strain is the most recognized of the skeletal biophysical stimuli, signaling phenomena also include fluid flow, hydrostatic pressure, shear stress, and ion-movement-related electrokinetic phenomena including, prominently, streaming potentials. Because of the complex interactions of these electromechanical signals, it is difficult to isolate the significance of each. The application of external electrical and electromagnetic fields allows an exploration of the effects of these stimuli on cell differentiation and extra-cellular matrix formation in the absence of mechanical strain. This review takes a distinctly translational approach to mechanistic and preclinical studies of differentiation and skeletal lineage commitment of mesenchymal cells under biophysical stimulation. In vitro studies facilitate the examination of isolated cellular responses while in vivo studies permit the observation of cell differentiation and extracellular matrix synthesis

    Evaluation of both exonic and intronic variants for effects on RNA splicing allows for accurate assessment of the effectiveness of precision therapies.

    No full text
    Elucidating the functional consequence of molecular defects underlying genetic diseases enables appropriate design of therapeutic options. Treatment of cystic fibrosis (CF) is an exemplar of this paradigm as the development of CFTR modulator therapies has allowed for targeted and effective treatment of individuals harboring specific genetic variants. However, the mechanism of these drugs limits effectiveness to particular classes of variants that allow production of CFTR protein. Thus, assessment of the molecular mechanism of individual variants is imperative for proper assignment of these precision therapies. This is particularly important when considering variants that affect pre-mRNA splicing, thus limiting success of the existing protein-targeted therapies. Variants affecting splicing can occur throughout exons and introns and the complexity of the process of splicing lends itself to a variety of outcomes, both at the RNA and protein levels, further complicating assessment of disease liability and modulator response. To investigate the scope of this challenge, we evaluated splicing and downstream effects of 52 naturally occurring CFTR variants (exonic = 15, intronic = 37). Expression of constructs containing select CFTR intronic sequences and complete CFTR exonic sequences in cell line models allowed for assessment of RNA and protein-level effects on an allele by allele basis. Characterization of primary nasal epithelial cells obtained from individuals harboring splice variants corroborated in vitro data. Notably, we identified exonic variants that result in complete missplicing and thus a lack of modulator response (e.g. c.2908G>A, c.523A>G), as well as intronic variants that respond to modulators due to the presence of residual normally spliced transcript (e.g. c.4242+2T>C, c.3717+40A>G). Overall, our data reveals diverse molecular outcomes amongst both exonic and intronic variants emphasizing the need to delineate RNA, protein, and functional effects of each variant in order to accurately assign precision therapies

    Capitalizing on the heterogeneous effects of CFTR nonsense and frameshift variants to inform therapeutic strategy for cystic fibrosis.

    No full text
    CFTR modulators have revolutionized the treatment of individuals with cystic fibrosis (CF) by improving the function of existing protein. Unfortunately, almost half of the disease-causing variants in CFTR are predicted to introduce premature termination codons (PTC) thereby causing absence of full-length CFTR protein. We hypothesized that a subset of nonsense and frameshift variants in CFTR allow expression of truncated protein that might respond to FDA-approved CFTR modulators. To address this concept, we selected 26 PTC-generating variants from four regions of CFTR and determined their consequences on CFTR mRNA, protein and function using intron-containing minigenes expressed in 3 cell lines (HEK293, MDCK and CFBE41o-) and patient-derived conditionally reprogrammed primary nasal epithelial cells. The PTC-generating variants fell into five groups based on RNA and protein effects. Group A (reduced mRNA, immature (core glycosylated) protein, function 1% (n = 5)), Group D (reduced mRNA, mature protein, function >1% (n = 5)) and Group E (aberrant RNA splicing, mature protein, function > 1% (n = 1)) variants responded to modulators. Increasing mRNA level by inhibition of NMD led to a significant amplification of modulator effect upon a Group D variant while response of a Group A variant was unaltered. Our work shows that PTC-generating variants should not be generalized as genetic 'nulls' as some may allow generation of protein that can be targeted to achieve clinical benefit
    corecore