483 research outputs found

    Assessment of Critical Habitats for Recovering the Chesapeake Bay Atlantic Sturgeon Distinct Population Segment

    Get PDF
    The states of Virginia and Maryland along with Virginia Commonwealth University (VCU), Virginia Institute of Marine Science (VIMS) and University of Maryland Center for Environmental Science (UMCES) partnered to assess critical habitat for recovering the Chesapeake Bay Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) distinct population segment. The primary objectives were to assess reproductive habitat in the James River, nursery habitat in the James and York Rivers and the degree of dependence of those populations to habitat in the Chesapeake Bay

    Notch signaling controls chondrocyte hypertrophy via indirect regulation of Sox9

    Get PDF
    RBPjk-dependent Notch signaling regulates both the onset of chondrocyte hypertrophy and the progression to terminal chondrocyte maturation during endochondral ossification. It has been suggested that Notch signaling can regulate Sox9 transcription, although how this occurs at the molecular level in chondrocytes and whether this transcriptional regulation mediates Notch control of chondrocyte hypertrophy and cartilage development is unknown or controversial. Here we have provided conclusive genetic evidence linking RBPjk-dependent Notch signaling to the regulation of Sox9 expression and chondrocyte hypertrophy by examining tissue-specific Rbpjk mutant (Prx1Cre;Rbpjk(f/f)), Rbpjk mutant/Sox9 haploinsufficient (Prx1Cre;Rbpjk(f/f);Sox9(f/+)), and control embryos for alterations in SOX9 expression and chondrocyte hypertrophy during cartilage development. These studies demonstrate that Notch signaling regulates the onset of chondrocyte maturation in a SOX9-dependent manner, while Notch-mediated regulation of terminal chondrocyte maturation likely functions independently of SOX9. Furthermore, our in vitro molecular analyses of the Sox9 promoter and Notch-mediated regulation of Sox9 gene expression in chondrogenic cells identified the ability of Notch to induce Sox9 expression directly in the acute setting, but suppresses Sox9 transcription with prolonged Notch signaling that requires protein synthesis of secondary effectors

    3D Printed Tetrakis(triphenylphosphine)palladium (0) Impregnated Stirrer Devices for Suzuki-Miyaura Cross-Coupling Reactions

    Get PDF
    3D printed materials can be readily modified to create bespoke structures that incorporate a range of catalysts at the point of printing. In this present study we report on the design and 3D printing of tetrakis (triphenylphosphine) palladium (0) im-pregnated 3D printed stirrer devices that were used to catalyze a Suzuki-Miyaura reaction between biaryl compounds in a batch-based approach. It was shown that the devices themselves are reusable, easy to use, air-stable, give access to an array of biaryl compounds in excellent yields and lead to low levels of palladium loss into the reaction. Simple modification of the device’s design by size reduction, meant that they could also be used to reduce the time of the Suzuki-Miyaura reaction by microwave enhanced heating. At the end of the reaction, devices can simply be removed from the flask, washed and reused, analogous to stirrer bead workflows. This makes the overall process of setting up multiple reactions simpler by obviating the need to weigh out catalysts for reactions and the device, once used, can be simply removed from the reaction media at the end of the reaction

    NOTCH signaling in skeletal progenitors is critical for fracture repair

    Get PDF
    Fracture nonunions develop in 10%–20% of patients with fractures, resulting in prolonged disability. Current data suggest that bone union during fracture repair is achieved via proliferation and differentiation of skeletal progenitors within periosteal and soft tissues surrounding bone, while bone marrow stromal/stem cells (BMSCs) and other skeletal progenitors may also contribute. The NOTCH signaling pathway is a critical maintenance factor for BMSCs during skeletal development, although the precise role for NOTCH and the requisite nature of BMSCs following fracture is unknown. Here, we evaluated whether NOTCH and/or BMSCs are required for fracture repair by performing nonstabilized and stabilized fractures on NOTCH-deficient mice with targeted deletion of RBPjk in skeletal progenitors, maturing osteoblasts, and committed chondrocytes. We determined that removal of NOTCH signaling in BMSCs and subsequent depletion of this population result in fracture nonunion, as the fracture repair process was normal in animals harboring either osteoblast- or chondrocyte-specific deletion of RBPjk. Together, this work provides a genetic model of a fracture nonunion and demonstrates the requirement for NOTCH and BMSCs in fracture repair, irrespective of fracture stability and vascularity

    Relative reactivity of alkenyl alcohols in the palladium-catalyzed redox-relay Heck reaction

    Get PDF
    The relative rates of alkenyl alcohols in the Pd-catalyzed redox-relay Heck reaction were measured in order to examine the effect of their steric and electronic properties on the rate-determining step. Competition experiments between an allylic alkenyl alcohol and two substrates with differing chain lengths revealed that the allylic alcohol reacts 3–4 times faster in either case. Competition between di- and trisubstituted alkenyl alcohols provided an interesting scenario, in which the disubstituted alkene was consumed first followed by reaction of the trisubstituted alkene. Consistent with this observation, the transition structures for the migratory insertion of the aryl group into the di- and trisubstituted alkenes were calculated with a lower barrier for the former. An internal competition between a substrate containing two alcohols with differing chain lengths demonstrated the catalyst's preference for migrating toward the closest alcohol. Additionally, it was observed that increasing the electron-density in the arene boronic acid promotes a faster reaction, which correlates with Hammett [sigma-rho] values to give a [rho] of −0.87

    The Atacama Cosmology Telescope: the stellar content of galaxy clusters selected using the Sunyaev-Zel'dovich effect

    Full text link
    We present a first measurement of the stellar mass component of galaxy clusters selected via the Sunyaev-Zel'dovich (SZ) effect, using 3.6 um and 4.5 um photometry from the Spitzer Space Telescope. Our sample consists of 14 clusters detected by the Atacama Cosmology Telescope (ACT), which span the redshift range 0.27 < z < 1.07 (median z = 0.50), and have dynamical mass measurements, accurate to about 30 per cent, with median M500 = 6.9 x 10^{14} MSun. We measure the 3.6 um and 4.5 um galaxy luminosity functions, finding the characteristic magnitude (m*) and faint-end slope (alpha) to be similar to those for IR-selected cluster samples. We perform the first measurements of the scaling of SZ-observables (Y500 and y0) with both brightest cluster galaxy (BCG) stellar mass and total cluster stellar mass (M500star). We find a significant correlation between BCG stellar mass and Y500 (E(z)^{-2/3} DA^2 Y500 ~ M*^{1.2 +/- 0.6}), although we are not able to obtain a strong constraint on the slope of the relation due to the small sample size. Additionally, we obtain E(z)^{-2/3} DA^2 Y500 ~ M500star^{1.0 +/- 0.6} for the scaling with total stellar mass. The mass fraction in stars spans the range 0.006-0.034, with the second ranked cluster in terms of dynamical mass (ACT-CL J0237-4939) having an unusually low total stellar mass and the lowest stellar mass fraction. For the five clusters with gas mass measurements available in the literature, we see no evidence for a shortfall of baryons relative to the cosmic mean value.Comment: Accepted for publication in MNRAS; 12 pages, 10 figure

    3D-printed Franz cells - update on optimization of manufacture and evaluation

    Get PDF
    OBJECTIVES: Laboratory in vitro permeation processes require the use of modified Franz type diffusion cells which are conventionally fabricated from glass. Fragility and high cost are frequently associated with this type of laboratory apparatus. The purpose of our present research was to develop a simple, economical and versatile approach to manufacture Franz type cells using additive manufacturing (AM). METHODS: Graphical Franz diffusion cell designs were reproduced with a stereolithography (SLA) 3D printer and assessed over a minimum period of 24 h. The surface morphology of AM printouts was analysed before and after compatibility studies using scanning electron microscopy (SEM). Comparative permeation studies in both glass and AM Franz type diffusion cells were conducted using a caffeine solution (1.5 mg mL‑1), applied to a model silicone membrane. RESULTS: Testing of the 3D printed scaffolds confirmed similar recovery of the permeant when compared to glass cells: 1.49 ± 0.01 and 1.50 ± 0.01 mg mL‑1, respectively, after 72 h. No significant differences were visible from the SEM micrographs demonstrating consistent, smooth and non-porous surfaces of the AM Franz cells’ core structure. Permeation studies using transparent 3D printed constructs resulted in 12.85 ± 0.53 μg cm ‑2 caffeine recovery in the receptor solution after 180 min with comparable permeant recovery, 11.49 ± 1.04 μg cm ‑2, for the glass homologues. CONCLUSION: AM constructs can be considered as viable alternatives to the use of conventional glass apparatus offering a simple, reproducible and cost-effective method of replicating specialised laboratory glassware. A wider range of permeants will be investigated in future studies with these novel 3D printed Franz diffusion cells
    • …
    corecore