3,995 research outputs found
Final report: Task 22 — Extreme ground motion studies
TASK 22 consisted of two separate investigations into extreme ground motions due to seismic events, Subtask 1 and Subtask 2. Subtask 1 included field studies of geological formations that should put an upper bound on extreme ground motions that have happened at the site of the formations. The locations are critically selected to provide the most effective constraints possible on the validity of the probabilistic seismic hazard analysis for Yucca Mountain. Subtask 2 surveyed recorded ground motions from around the world, with the aim to draw general conclusions from these as to the conditions where extreme ground motions are observed. Recommendations for research concerning extreme ground motions were presented by Hanks et al. (2004 a,b). Preliminary results and feasibility conclusions were presented in a synthesis report by Brune et al. (2007, Synthesis Report)
Topological representations of matroid maps
The Topological Representation Theorem for (oriented) matroids states that
every (oriented) matroid can be realized as the intersection lattice of an
arrangement of codimension one homotopy spheres on a homotopy sphere. In this
paper, we use a construction of Engstr\"om to show that structure-preserving
maps between matroids induce topological mappings between their
representations; a result previously known only in the oriented case.
Specifically, we show that weak maps induce continuous maps and that the
process is a functor from the category of matroids with weak maps to the
homotopy category of topological spaces. We also give a new and conceptual
proof of a result regarding the Whitney numbers of the first kind of a matroid.Comment: Final version, 21 pages, 8 figures; Journal of Algebraic
Combinatorics, 201
The Roton Fermi Liquid
We introduce and analyze a novel metallic phase of two-dimensional (2d)
electrons, the Roton Fermi Liquid (RFL), which, in contrast to the Landau Fermi
liquid, supports both gapless fermionic and bosonic quasiparticle excitations.
The RFL is accessed using a re-formulation of 2d electrons consisting of
fermionic quasiparticles and vortices interacting with a mutual
long-ranged statistical interaction. In the presence of a strong
vortex-antivortex (i.e. roton) hopping term, the RFL phase emerges as an exotic
yet eminently tractable new quantum ground state. The RFL phase exhibits a
``Bose surface'' of gapless roton excitations describing transverse current
fluctuations, has off-diagonal quasi-long-ranged order (ODQLRO) at zero
temperature (T=0), but is not superconducting, having zero superfluid density
and no Meissner effect. The electrical resistance {\it vanishes} as
with a power of temperature (and frequency), (with ), independent of the impurity concentration. The RFL phase also has a full
Fermi surface of quasiparticle excitations just as in a Landau Fermi liquid.
Electrons can, however, scatter anomalously from rotonic "current
fluctuations'' and "superconducting fluctuations'', leading to "hot" and "cold"
spots. Fermionic quasiparticles dominate the Hall electrical transport. We also
discuss instabilities of the RFL to a conventional Fermi liquid and a
superconductor. Precisely {\it at} the instability into the Fermi liquid state,
the exponent , so that . Upon entering the
superconducting state the anomalous quasiparticle scattering is strongly
suppressed. We discuss how the RFL phenomenology might apply to the cuprates.Comment: 43 page
Redsharc: A Programming Model and On-Chip Network for Multi-Core Systems on a Programmable Chip
The reconfigurable data-stream hardware software architecture (Redsharc) is a programming model and
network-on-a-chip solution designed to scale to meet the performance needs of multi-core Systems on a programmable chip (MCSoPC). Redsharc uses an abstract API that allows programmers to develop systems of simultaneously executing kernels, in software and/or hardware, that communicate over a seamless interface. Redsharc incorporates two on-chip networks that directly implement the API to support high-performance systems with numerous hardware kernels. This paper documents the API, describes the common infrastructure, and quantifies the performance of a complete implementation. Furthermore, the overhead, in terms of resource utilization, is reported along with the ability to integrate hard and soft processor cores with purely hardware kernels being demonstrated
Initial Metabolic Profiles Are Associated with 7-Day Survival among Infants Born at 22-25 Weeks of Gestation.
OBJECTIVE:To evaluate the association between early metabolic profiles combined with infant characteristics and survival past 7 days of age in infants born at 22-25 weeks of gestation. STUDY DESIGN:This nested case-control consisted of 465 singleton live births in California from 2005 to 2011 at 22-25 weeks of gestation. All infants had newborn metabolic screening data available. Data included linked birth certificate and mother and infant hospital discharge records. Mortality was derived from linked death certificates and death discharge information. Each death within 7 days was matched to 4 surviving controls by gestational age and birth weight z score category, leaving 93 cases and 372 controls. The association between explanatory variables and 7-day survival was modeled via stepwise logistic regression. Infant characteristics, 42 metabolites, and 12 metabolite ratios were considered for model inclusion. Model performance was assessed via area under the curve. RESULTS:The final model included 1 characteristic and 11 metabolites. The model demonstrated a strong association between metabolic patterns and infant survival (area under the curve [AUC] 0.885, 95% CI 0.851-0.920). Furthermore, a model with just the selected metabolites performed better (AUC 0.879, 95% CI 0.841-0.916) than a model with multiple clinical characteristics (AUC 0.685, 95% CI 0.627-0.742). CONCLUSIONS:Use of metabolomics significantly strengthens the association with 7-day survival in infants born extremely premature. Physicians may be able to use metabolic profiles at birth to refine mortality risks and inform postnatal counseling for infants born at <26 weeks of gestation
Recommended from our members
Human Immunodeficiency Virus (HIV)-Infected CCR6+ Rectal CD4+ T Cells and HIV Persistence On Antiretroviral Therapy.
BackgroundIdentifying where human immunodeficiency virus (HIV) persists in people living with HIV and receiving antiretroviral therapy is critical to develop cure strategies. We assessed the relationship of HIV persistence to expression of chemokine receptors and their chemokines in blood (n = 48) and in rectal (n = 20) and lymph node (LN; n = 8) tissue collected from people living with HIV who were receiving suppressive antiretroviral therapy.MethodsCell-associated integrated HIV DNA, unspliced HIV RNA, and chemokine messenger RNA were quantified by quantitative polymerase chain reaction. Chemokine receptor expression on CD4+ T cells was determined using flow cytometry.ResultsIntegrated HIV DNA levels in CD4+ T cells, CCR6+CXCR3+ memory CD4+ T-cell frequency, and CCL20 expression (ligand for CCR6) were highest in rectal tissue, where HIV-infected CCR6+ T cells accounted for nearly all infected cells (median, 89.7%). Conversely in LN tissue, CCR6+ T cells were infrequent, and there was a statistically significant association of cell-associated HIV DNA and RNA with CCL19, CCL21, and CXCL13 chemokines.ConclusionsHIV-infected CCR6+ CD4+ T cells accounted for the majority of infected cells in rectal tissue. The different relationships between HIV persistence and T-cell subsets and chemokines in rectal and LN tissue suggest that different tissue-specific strategies may be required to eliminate HIV persistence and that assessment of biomarkers for HIV persistence may not be generalizable between blood and other tissues
Fractionalization, topological order, and cuprate superconductivity
This paper is concerned with the idea that the electron is fractionalized in
the cuprate high- materials. We show how the notion of topological order
may be used to develop a precise theoretical characterization of a
fractionalized phase in spatial dimension higher than one. Apart from the
fractional particles into which the electron breaks apart, there are
non-trivial gapped topological excitations - dubbed "visons". A cylindrical
sample that is fractionalized exhibits two disconnected topological sectors
depending on whether a vison is trapped in the "hole" or not. Indeed, "vison
expulsion" is to fractionalization what the Meissner effect ("flux expulsion")
is to superconductivity. This understanding enables us to address a number of
conceptual issues that need to be confronted by any theory of the cuprates
based on fractionalization ideas. We argue that whether or not the electron
fractionalizes in the cuprates is a sharp and well-posed question with a
definite answer. We elaborate on our recent proposal for an experiment to
unambiguously settle this issue.Comment: 18 pages, 7 figure
- …