15 research outputs found

    (Not as) Big as a Barn: Upper Bounds on Dark Matter-Nucleus Cross Sections

    Full text link
    Critical probes of dark matter come from tests of its elastic scattering with nuclei. The results are typically assumed to be model-independent, meaning that the form of the potential need not be specified and that the cross sections on different nuclear targets can be simply related to the cross section on nucleons. For point-like spin-independent scattering, the assumed scaling relation is σχAA2μA2σχNA4σχN\sigma_{\chi A} \propto A^2 \mu_A^2 \sigma_{\chi N}\propto A^4 \sigma_{\chi N}, where the A2A^2 comes from coherence and the μA2A2mN2\mu_A^2\simeq A^2 m_N^2 from kinematics for mχmAm_\chi\gg m_A. Here we calculate where model independence ends, i.e., where the cross section becomes so large that it violates its defining assumptions. We show that the assumed scaling relations generically fail for dark matter-nucleus cross sections σχA10321027  cm2\sigma_{\chi A} \sim 10^{-32}-10^{-27}\;\text{cm}^2, significantly below the geometric sizes of nuclei, and well within the regime probed by underground detectors. Last, we show on theoretical grounds, and in light of existing limits on light mediators, that point-like dark matter cannot have σχN1025  cm2\sigma_{\chi N}\gtrsim10^{-25}\;\text{cm}^2, above which many claimed constraints originate from cosmology and astrophysics. The most viable way to have such large cross sections is composite dark matter, which introduces significant additional model dependence through the choice of form factor. All prior limits on dark matter with cross sections σχN>1032  cm2\sigma_{\chi N}>10^{-32}\;\text{cm}^2 with mχ1  GeVm_\chi\gtrsim 1\;\text{GeV} must therefore be re-evaluated and reinterpreted.Comment: 17 pages, 7 figures, comments are welcom

    The NANOGrav 15-year Data Set: Bayesian Limits on Gravitational Waves from Individual Supermassive Black Hole Binaries

    Get PDF
    Evidence for a low-frequency stochastic gravitational wave background has recently been reported based on analyses of pulsar timing array data. The most likely source of such a background is a population of supermassive black hole binaries, the loudest of which may be individually detected in these datasets. Here we present the search for individual supermassive black hole binaries in the NANOGrav 15-year dataset. We introduce several new techniques, which enhance the efficiency and modeling accuracy of the analysis. The search uncovered weak evidence for two candidate signals, one with a gravitational-wave frequency of \sim4 nHz, and another at \sim170 nHz. The significance of the low-frequency candidate was greatly diminished when Hellings-Downs correlations were included in the background model. The high-frequency candidate was discounted due to the lack of a plausible host galaxy, the unlikely astrophysical prior odds of finding such a source, and since most of its support comes from a single pulsar with a commensurate binary period. Finding no compelling evidence for signals from individual binary systems, we place upper limits on the strain amplitude of gravitational waves emitted by such systems.Comment: 23 pages, 13 figures, 2 tables. Accepted for publication in Astrophysical Journal Letters as part of Focus on NANOGrav's 15-year Data Set and the Gravitational Wave Background. For questions or comments, please email [email protected]

    Evaluation of Near-Infrared Reflectance and Transflectance Sensing System for Predicting Manure Nutrients

    No full text
    Livestock manure is widely applied onto agriculture soil to fertilize crops and increase soil fertility. However, it is difficult to provide real-time manure nutrient data based on traditional lab analyses during application. Manure sensing using near-infrared (NIR) spectroscopy is an innovative, rapid, and cost-effective technique for inline analysis of animal manure. This study investigated a NIR sensing system with reflectance and transflectance modes to predict N speciation in dairy cow manure using a spiking method. In this study, 20 dairy cow manure samples were collected and spiked to achieve four levels of ammoniacal nitrogen (NH4-N) and organic nitrogen (Org-N) concentrations that resulted in 100 samples in each spiking group. All samples were scanned and analyzed using a NIR system with reflectance and transflectance sensor configurations. NIR calibration models were developed using partial least square regression analysis for NH4-N, Org-N, total solid (TS), ash, and particle size (PS). Coefficient of determination (R2) and root mean square error (RMSE) were selected to evaluate the models. A transflectance probe with a 1 mm path length had the best performance for analyzing manure constituents among three path lengths. Reflectance mode improved the calibration accuracy for NH4-N and Org-N, whereas transflectance mode improved the model predictability for TS, ash, and PS. Reflectance provided good prediction for NH4-N (R2 = 0.83; RMSE = 0.65 mg mL−1) and approximate predictions for Org-N (R2 = 0.66; RMSE = 1.18 mg mL−1). Transflectance was excellent for TS predictions (R2 = 0.97), and provided good quantitative predictions for ash and approximate predictions for PS. The correlations between the accuracy of NH4-N and Org-N calibration models and other manure parameters were not observed indicating the predictions of N contents were not affected by TS, ash, and PS

    Evaluating the Feasibility of a Low-Field Nuclear Magnetic Resonance (NMR) Sensor for Manure Nutrient Prediction

    No full text
    Livestock manure is typically applied to fertilize crops, however the accurate determination of manure nutrient composition through a reliable method is important to optimize manure application rates that maximize crop yields and prevent environmental contamination. Existing laboratory methods can be time consuming, expensive, and generally the results are not provided prior to manure application. In this study, the evaluation of a low-field nuclear magnetic resonance (NMR) sensor designated for manure nutrient prediction was assessed. Twenty dairy manure samples were analyzed for total solid (TS), total nitrogen (TN), ammoniacal nitrogen (NH4-N), and total phosphorus (TP) in a certified laboratory and in parallel using the NMR analyzer. The linear regression of NMR prediction versus lab measurements for TS had an R2 value of 0.86 for samples with TS 4-N, respectively, indicating good correlations between NMR prediction and lab measurements. The TP prediction of NMR for all samples agreed with the lab analysis with R2 greater than 0.87. The intra- and inter-sample variations of TP measured by NMR were significantly larger than other parameters suggesting less robustness in TP prediction. The results of this study indicate low-field NMR is a rapid method that has a potential to be utilized as an alternative to laboratory analysis of manure nutrients, however, further investigation is needed before wide application for on farm analysis

    Harvest Timing of Standing Corn Using Near-Infrared Reflectance Spectroscopy

    No full text
    Harvesting corn at the proper maturity is important for managing its nutritive value as livestock feed. Standing whole-plant moisture content is commonly utilized as a surrogate for corn maturity. However, sampling whole plants is time consuming and requires equipment not commonly found on farms. This study evaluated three methods of estimating standing moisture content. The most convenient and accurate approach involved predicting ear moisture using handheld near-infrared reflectance spectrometers and applying a previously established relationship to estimate whole-plant moisture from the ear moisture. The ear moisture model was developed using a partial least squares regression model in the 2021 growing season utilizing reference data from 610 corn plants. Ear moisture contents ranged from 26 to 80 %w.b., corresponding to a whole-plant moisture range of 55 to 81 %w.b. The model was evaluated with a validation dataset of 330 plants collected in a subsequent growing year. The model could predict whole-plant moisture in 2022 plants with a standard error of prediction of 2.7 and an R2P of 0.88. Additionally, the transfer of calibrations between three spectrometers was evaluated. This revealed significant spectrometer-to-spectrometer differences that could be mitigated by including more than one spectrometer in the calibration dataset. While this result shows promise for the method, further work should be conducted to establish calibration stability in a larger geographical region

    The Relative Performance of a Benchtop Scanning Monochromator and Handheld Fourier Transform Near-Infrared Reflectance Spectrometer in Predicting Forage Nutritive Value

    No full text
    Advanced manufacturing techniques have enabled low-cost, on-chip spectrometers. Little research exists, however, on their performance relative to the state of technology systems. The present study compares the utility of a benchtop FOSS NIRSystems 6500 (FOSS) to a handheld NeoSpectra-Scanner (NEO) to develop models that predict the composition of dried and ground grass, and alfalfa forages. Mixed-species prediction models were developed for several forage constituents, and performance was assessed using an independent dataset. Prediction models developed with spectra from the FOSS instrument had a standard error of prediction (SEP, % DM) of 1.4, 1.8, 3.3, 1.0, 0.42, and 1.3, for neutral detergent fiber (NDF), true in vitro digestibility (IVTD), neutral detergent fiber digestibility (NDFD), acid detergent fiber (ADF), acid detergent lignin (ADL), and crude protein (CP), respectively. The R2P for these models ranged from 0.90 to 0.97. Models developed with the NEO resulted in an average increase in SEP of 0.14 and an average decrease in R2P of 0.002

    Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage

    No full text
    Prediction models of different types of forage were developed using a dataset of near-infrared reflectance spectra collected by three handheld NeoSpectra-Scanners and laboratory reference values for neutral detergent fiber (NDF), in vitro digestibility (IVTD), neutral detergent fiber digestibility (NDFD), acid detergent fiber (ADF), acid detergent lignin (ADL), crude protein (CP), Ash, and moisture content (MO) from a total of 555 undried ensiled corn, grass, and alfalfa samples. Data analyses and results of models developed in this study indicated that the scanning method significantly impacted the accuracy of the prediction of forage constituents, and using the NEO instrument with the sliding method improved calibration model performance (p < 0.05) for nearly all constituents. In general, poorer-performing models were more impacted by instrument-to-instrument variability. The exception, however, was moisture content (p = 0.02), where the validation set with an independent instrument resulted in an RMSEP of 2.39 compared to 1.44 where the same instruments were used for both calibration and validation. Validation model performance for NDF, IVTD, NDFD, ADL, ADF, Ash, CP, and moisture content were 4.18, 3.86, 6.14, 1.10, 2.75, 1.42, 2.71, and 1.67 for alfalfa-grass silage samples and 3.22, 2.21, 4.55, 0.38, 2.07, 0.50, 0.51, and 1.62 for corn silage, respectively. Based on the results of this study, the handheld spectrometer would be useful for predicting moisture content in undried and unground alfalfa-grass (R2 = 0.97) and corn (R2 = 0.93) forage samples

    Practical Considerations for Using the NeoSpectra-Scanner Handheld Near-Infrared Reflectance Spectrometer to Predict the Nutritive Value of Undried Ensiled Forage

    No full text
    Prediction models of different types of forage were developed using a dataset of near-infrared reflectance spectra collected by three handheld NeoSpectra-Scanners and laboratory reference values for neutral detergent fiber (NDF), in vitro digestibility (IVTD), neutral detergent fiber digestibility (NDFD), acid detergent fiber (ADF), acid detergent lignin (ADL), crude protein (CP), Ash, and moisture content (MO) from a total of 555 undried ensiled corn, grass, and alfalfa samples. Data analyses and results of models developed in this study indicated that the scanning method significantly impacted the accuracy of the prediction of forage constituents, and using the NEO instrument with the sliding method improved calibration model performance (p p = 0.02), where the validation set with an independent instrument resulted in an RMSEP of 2.39 compared to 1.44 where the same instruments were used for both calibration and validation. Validation model performance for NDF, IVTD, NDFD, ADL, ADF, Ash, CP, and moisture content were 4.18, 3.86, 6.14, 1.10, 2.75, 1.42, 2.71, and 1.67 for alfalfa-grass silage samples and 3.22, 2.21, 4.55, 0.38, 2.07, 0.50, 0.51, and 1.62 for corn silage, respectively. Based on the results of this study, the handheld spectrometer would be useful for predicting moisture content in undried and unground alfalfa-grass (R2 = 0.97) and corn (R2 = 0.93) forage samples

    Impact—Shredding Processing of Whole-Plant Corn: Machine Performance, Physical Properties, and In Situ Ruminant Digestion

    No full text
    An intensive processing mechanism that combined impact and shredding was applied to create physical disruption of whole-plant corn as a means to increase in situ dry matter (DM) digestion in lactating dairy cows. A ratio of treatment leachate conductivity relative to that of an ultimately processed treatment, defined as a processing level index, was used to quantify material physical disruption. Two processing levels were compared to a control treatment, which applied conventional chopping and kernel processing. The non-grain fraction was substantially size-reduced by processing such that only 28% to 51% by mass of this material remained greater than 6.4 mm length. After processing with the experimental processor, greater than 85% of kernels passed through a 4.75 mm screen, and the corn silage processing score (CSPS) was 18 to 27 percentage points greater than the control. The highly fiberized material was more compliant; thus, compacted density was 9% to 17% greater than the control. During in situ digestion experiments, processing significantly increased the rapidly soluble DM fraction by 10 percentage points and the extent of DM disappearance by 5 percentage points through 16 h incubation

    Physical Properties of Moist, Fermented Corn Kernels

    Get PDF
    A novel approach to producing corn stover biomass feedstock has been investigated. In this approach, corn grain and stover are co-harvested at moisture contents much less than typical corn silage. The grain and stover are conserved together by anaerobic storage and fermentation and then separated before end use. When separated from the stover, the moist, fermented grain had physical characteristics that differ from typical low-moisture, unfermented grain. A comprehensive study was conducted to quantify the physical properties of this moist, fermented grain. Six corn kernel treatments, either fermented or unfermented, having different moisture contents, were used. Moist, fermented kernels (26 and 36% w.b. moisture content) increased in size during storage. The fermented kernels’ widths and thicknesses were 10% and 15% greater, respectively, and their volume was 28% greater than the dry kernels (15% w.b.). Dry basis particle density was 9% less for moist, fermented kernels. Additionally, the dry basis bulk density was 29% less, and the dry basis hopper-discharged mass flow rate was 36% less. Moist, fermented grain had significantly greater kernel-to-kernel coefficients of friction and angles of repose compared to relatively dry grain. The friction coefficient on four different surfaces was also significantly greater for fermented kernels. Fermented corn kernels had lower individual kernel rupture strengths than unfermented kernels. These physical differences must be considered when designing material handling and processing systems for moist, fermented corn grain.This article is published as Blazer, Keagan J., Kevin J. Shinners, Zachary A. Kluge, Mehari Z. Tekeste, and Matthew F. Digman. "Physical Properties of Moist, Fermented Corn Kernels." Processes 11, no. 5 (2023): 1351. DOI: 10.3390/pr11051351. Copyright 2023 by the authors. Attribution 4.0 International (CC BY 4.0). Posted with permission
    corecore