1,661 research outputs found

    Alterations in Cortical Sensorimotor Connectivity following Complete Cervical Spinal Cord Injury: A Prospective Resting-State fMRI Study

    Get PDF
    Functional magnetic resonance imaging (fMRI) studies have demonstrated alterations during task-induced brain activation in spinal cord injury (SCI) patients. The interruption to structural integrity of the spinal cord and the resultant disrupted flow of bidirectional communication between the brain and the spinal cord might contribute to the observed dynamic reorganization (neural plasticity). However, the effect of SCI on brain resting-state connectivity patterns remains unclear. We undertook a prospective resting-state fMRI (rs-fMRI) study to explore changes to cortical activation patterns following SCI. With institutional review board approval, rs-fMRI data was obtained in eleven patients with complete cervical SCI (\u3e2 years post injury) and nine age-matched controls. The data was processed using the Analysis of Functional Neuroimages software. Region of interest (ROI) based analysis was performed to study changes in the sensorimotor network using pre- and post-central gyri as seed regions. Two-sampled t-test was carried out to check for significant differences between the two groups. SCI patients showed decreased functional connectivity in motor and sensory cortical regions when compared to controls. The decrease was noted in ipsilateral, contralateral, and interhemispheric regions for left and right precentral ROIs. Additionally, the left postcentral ROI demonstrated increased connectivity with the thalamus bilaterally in SCI patients. Our results suggest that cortical activation patterns in the sensorimotor network undergo dynamic reorganization following SCI. The presence of these changes in chronic spinal cord injury patients is suggestive of the inherent neural plasticity within the central nervous system

    Evaluation of Whole-Brain Resting-State Functional Connectivity in Spinal Cord Injury - A Large-Scale Network Analysis Using Network Based Statistic

    Get PDF
    Large-scale network analysis characterizes the brain as a complex network of nodes and edges to evaluate functional connectivity patterns. The utility of graph-based techniques has been demonstrated in an increasing number of restingstate functional MRI (rs-fMRI) studies in the normal and diseased brain. However, to our knowledge, graph theory has not been used to study the reorganization pattern of resting-state brain networks in patients with traumatic complete spinal cord injury (SCI). In the present analysis, we applied a graph-theoretical approach to explore changes to global brain network architecture as a result of SCI. Fifteen subjects with chronic (\u3e 2 years) complete (American Spinal Injury Association [ASIA] A) cervical SCI and 15 neurologically intact controls were scanned using rs-fMRI. The data were preprocessed followed by parcellation of the brain into 116 regions of interest (ROI) or nodes. The average time series was extracted at each node, and correlation analysis was performed between every pair of nodes. A functional connectivity matrix for each subject was then generated. Subsequently, the matrices were averaged across groups, and network changes were evaluated between groups using the network-based statistic (NBS) method. Our results showed decreased connectivity in a subnetwork of the whole brain in SCI compared with control subjects. Upon further examination, increased connectivity was observed in a subnetwork of the sensorimotor cortex and cerebellum network in SCI. In conclusion, our findings emphasize the applicability of NBS to study functional connectivity architecture in diseased brain states. Further, we show reorganization of large-scale resting-state brain networks in traumatic SCI, with potential prognostic and therapeutic implications

    Metallocene catalysts for the ring-opening co-polymerisation of epoxides and cyclic anhydrides

    Get PDF
    The ring-opening co-polymerisation (ROCOP) of epoxides and cyclic anhydrides is a versatile route to new polyesters. The vast number of monomers that are readily available means that an effectively limitless number of unique polymeric materials can be prepared using a common synthetic route, thereby paving the way to polymers that are more recyclable and could be used in applications that currently lie exclusively within the remit of polyolefins. Metallocene complexes [Cp2MCl2] (M = Ti, Zr, Hf, Cp = η5-C5H5) are known to be excellent pre-catalysts for olefin polymerisation and yet have not been reported for ROCOP, despite their supreme pedigree in the polymerisation realm. Herein, we report the first application of [Cp2MCl2] as catalysts for the ROCOP of epoxides and anhydrides and show that they are effective catalysts for this reaction. The catalytic performances are good with standard epoxides such as cyclohexene oxide but are excellent with more challenging sterically demanding limonene oxide, and this therefore represents a highly effective catalyst system for the preparation of bio-derived recyclable polymers

    Observational Constraints on the Ages of Molecular Clouds and the Star-Formation Timescale: Ambipolar-Diffusion--Controlled or Turbulence-Induced Star Formation?

    Full text link
    We revisit the problem of the star formation timescale and the ages of molecular clouds. The apparent overabundance of star-forming molecular clouds over clouds without active star formation has been thought to indicate that molecular clouds are "short-lived" and that star formation is "rapid". We show that this statistical argument lacks self-consistency and, even within the rapid star-formation scenario, implies cloud lifetimes of approximately 10 Myr. We discuss additional observational evidence from external galaxies that indicate lifetimes of molecular clouds and a timescale of star formation of approximately 10 Myr . These long cloud lifetimes in conjunction with the rapid (approximately 1 Myr) decay of supersonic turbulence present severe difficulties for the scenario of turbulence-controlled star formation. By contrast, we show that all 31 existing observations of objects for which the linewidth, the size, and the magnetic field strength have been reliably measured are in excellent quantitative agreement with the predictions of the ambipolar-diffusion theory. Within the ambipolar-diffusion-controlled star formation theory the linewidths may be attributed to large-scale non-radial cloud oscillations (essentially standing large-amplitude, long-wavelength Alfven waves), and the predicted relation between the linewidth, the size, and the magnetic field is a natural consequence of magnetic support of self-gravitating clouds.Comment: 7 pages, 2 figures, uses emulateapj; accepted for publication in Ap

    Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging

    Get PDF
    Three dimensional (3D) manual segmentation of the prostate on magnetic resonance imaging (MRI) is a laborious and time-consuming task that is subject to inter-observer variability. In this study, we developed a fully automatic segmentation algorithm for T2-weighted endorectal prostate MRI and evaluated its accuracy within different regions of interest using a set of complementary error metrics. Our dataset contained 42 T2-weighted endorectal MRI from prostate cancer patients. The prostate was manually segmented by one observer on all of the images and by two other observers on a subset of 10 images. The algorithm first coarsely localizes the prostate in the image using a template matching technique. Then, it defines the prostate surface using learned shape and appearance information from a set of training images. To evaluate the algorithm, we assessed the error metric values in the context of measured inter-observer variability and compared performance to that of our previously published semi-automatic approach. The automatic algorithm needed an average execution time of ∼60 s to segment the prostate in 3D. When compared to a single-observer reference standard, the automatic algorithm has an average mean absolute distance of 2.8 mm, Dice similarity coefficient of 82%, recall of 82%, precision of 84%, and volume difference of 0.5 cm in the mid-gland. Concordant with other studies, accuracy was highest in the mid-gland and lower in the apex and base. Loss of accuracy with respect to the semi-automatic algorithm was less than the measured inter-observer variability in manual segmentation for the same task.

    Stepping Up The Pressure: Arousal Can Be Associated With A Reduction In Male Aggression

    Get PDF
    The attentional myopia model of behavioral control [Mann and Ward, 2007] was tested in an experiment investigating the relationship between physiological arousal and aggression. Drawing on previous work linking arousal and narrowed attentional focus, the model predicts that arousal will lead to behavior that is relatively disinhibited in situations in which promoting pressures to aggress are highly salient. In situations in which inhibitory pressures are more salient, the model predicts behavior that is relatively restrained. In the experiment, 81 male undergraduates delivered noise-blasts against a provoking confederate while experiencing either high or low levels of physiological arousal and, at the same time, being exposed to cues that served either to promote or inhibit aggression. In addition to supporting the predictions of the model, this experiment provided some of the first evidence for enhanced control of aggression under conditions of heightened physiological arousal. Implications for interventions designed to reduce aggression are discussed. Aggr. Behav. 34:584–592, 2008. © 2008 Wiley-Liss, Inc
    • …
    corecore