5 research outputs found

    Geothermal Power: Factors affecting the performance of Binary Plants

    Get PDF
    A meta-study is conducted investigating the effect of plant parameters on the power output and efficiency of geothermal binary cycle power plants. Production well depth, geofluid temperature and mass flow rate are the parameters considered. An increase in mass flow rate is shown to increase both power output and efficiency. It is shown that a distinction can be made between two basic types of binary plants based off of mass flow and performance data. The well depth is shown to have no effect on plant performance. In addition, condenser parameters were investigated and the highest efficiency condenser system is determined

    Smart Drug-Delivery System of Upconversion Nanoparticles Coated with Mesoporous Silica for Controlled Release

    No full text
    Drug-delivery vehicles have garnered immense interest in recent years due to unparalleled progress made in material science and nanomedicine. However, the development of stimuli-responsive devices with controllable drug-release systems (DRSs) is still in its nascent stage. In this paper, we designed a two-way controlled drug-release system that can be promoted and prolonged, using the external stimulation of near-infrared light (NIR) and protein coating. A hierarchical nanostructure was fabricated using upconversion nanoparticles (UCNPs)—mesoporous silica as the core-shell structure with protein lysozyme coating. The mesoporous silica shell provides abundant pores for the loading of drug molecules and a specific type of photosensitive molecules. The morphology and the physical properties of the nanostructures were thoroughly characterized. The results exhibited the uniform core-shell nanostructures of ~four UCNPs encapsulated in one mesoporous silica nanoparticle. The core-shell nanoparticles were in the spherical shape with an average size of 200 nm, average surface area of 446.54 m2/g, and pore size of 4.6 nm. Using doxorubicin (DOX), a chemotherapy agent as the drug model, we demonstrated that a novel DRS with capacity of smart modulation to promote or inhibit the drug release under NIR light and protein coating, respectively. Further, we demonstrated the therapeutic effect of the designed DRSs using breast cancer cells. The reported novel controlled DRS with dual functionality could have a promising potential for chemotherapy treatment of solid cancers

    Developmental vascular malformations in EPAS1 gain-of-function syndrome

    Get PDF
    Mutations in EPAS1, encoding hypoxia-inducible factor-2α (HIF-2α), were previously identified in a syndrome of multiple paragangliomas, somatostatinoma, and polycythemia. HIF-2α, when dimerized with HIF-1β, acts as an angiogenic transcription factor. Patients referred to the NIH for new, recurrent, and/or metastatic paraganglioma or pheochromocytoma were confirmed for EPAS1 gain-of-function mutation; imaging was evaluated for vascular malformations. We evaluated the Epas1A529V transgenic syndrome mouse model, corresponding to the mutation initially detected in the patients (EPAS1A530V), for vascular malformations via intravital 2-photon microscopy of meningeal vessels, terminal vascular perfusion with Microfil silicate polymer and subsequent intact ex vivo 14T MRI and micro-CT, and histologic sectioning and staining of the brain and identified pathologies. Further, we evaluated retinas from corresponding developmental time points (P7, P14, and P21) and the adult dura via immunofluorescent labeling of vessels and confocal imaging. We identified a spectrum of vascular malformations in all 9 syndromic patients and in all our tested mutant mice. Patient vessels had higher variant allele frequency than adjacent normal tissue. Veins of the murine retina and intracranial dura failed to regress normally at the expected developmental time points. These findings add vascular malformation as a new clinical feature of EPAS1 gain-of-function syndrome

    Mapping the human genetic architecture of COVID-19

    Get PDF
    The genetic make-up of an individual contributes to the susceptibility and response to viral infection. Although environmental, clinical and social factors have a role in the chance of exposure to SARS-CoV-2 and the severity of COVID-191,2, host genetics may also be important. Identifying host-specific genetic factors may reveal biological mechanisms of therapeutic relevance and clarify causal relationships of modifiable environmental risk factors for SARS-CoV-2 infection and outcomes. We formed a global network of researchers to investigate the role of human genetics in SARS-CoV-2 infection and COVID-19 severity. Here we describe the results of three genome-wide association meta-analyses that consist of up to 49,562 patients with COVID-19 from 46 studies across 19 countries. We report 13 genome-wide significant loci that are associated with SARS-CoV-2 infection or severe manifestations of COVID-19. Several of these loci correspond to previously documented associations to lung or autoimmune and inflammatory diseases3–7. They also represent potentially actionable mechanisms in response to infection. Mendelian randomization analyses support a causal role for smoking and body-mass index for severe COVID-19 although not for type II diabetes. The identification of novel host genetic factors associated with COVID-19 was made possible by the community of human genetics researchers coming together to prioritize the sharing of data, results, resources and analytical frameworks. This working model of international collaboration underscores what is possible for future genetic discoveries in emerging pandemics, or indeed for any complex human disease

    A second update on mapping the human genetic architecture of COVID-19

    Get PDF
    corecore