112 research outputs found

    Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's Disease Classification of Gait Patterns

    Full text link
    Application and use of deep learning algorithms for different healthcare applications is gaining interest at a steady pace. However, use of such algorithms can prove to be challenging as they require large amounts of training data that capture different possible variations. This makes it difficult to use them in a clinical setting since in most health applications researchers often have to work with limited data. Less data can cause the deep learning model to over-fit. In this paper, we ask how can we use data from a different environment, different use-case, with widely differing data distributions. We exemplify this use case by using single-sensor accelerometer data from healthy subjects performing activities of daily living - ADLs (source dataset), to extract features relevant to multi-sensor accelerometer gait data (target dataset) for Parkinson's disease classification. We train the pre-trained model using the source dataset and use it as a feature extractor. We show that the features extracted for the target dataset can be used to train an effective classification model. Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model. We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.Comment: Accepted in the 42nd Annual International Conferences of the IEEE Engineering in Medicine and Biology Society (EMBC 2020

    Using periodicity intensity to detect long term behaviour change

    Get PDF
    This paper introduces a new way to analyse and visualize quantified-self or lifelog data captured from any lifelogging device over an extended period of time. The mechanism works on the raw, unstructured lifelog data by detecting periodicities, those repeating patters that occur within our lifestyles at different frequencies including daily, weekly, seasonal, etc. Focusing on the 24 hour cycle, we calculate the strength of the 24-hour periodicity at 24-hour intervals over an extended period of a lifelog. Changes in this strength of the 24-hour cycle can illustrate changes or shifts in underlying human behavior. We have performed this analysis on several lifelog datasets of durations from several weeks to almost a decade, from recordings of training distances to sleep data. In this paper we use 24 hour accelerometer data to illustrate the technique, showing how changes in human behavior can be identified

    Behavioral periodicity detection from 24h waveform wrist accelerometry

    Get PDF
    Develop a framework for identifying meaningful periodicities (i.e., repeating patterns) and the strength of these periodicities from 24h waveform wrist accelerometr

    Validation of Consumer-Based Hip and Wrist Activity Monitors in Older Adults With Varied Ambulatory Abilities

    Get PDF
    BACKGROUND: The accuracy of step detection in consumer-based wearable activity monitors in older adults with varied ambulatory abilities is not known. METHODS: We assessed the validity of two hip-worn (Fitbit One and Omron HJ-112) and two wrist-worn (Fitbit Flex and Jawbone UP) activity monitors in 99 older adults of varying ambulatory abilities and also included the validity results from the ankle-worn StepWatch as a comparison device. Nonimpaired, impaired (Short Physical Performance Battery Score < 9), cane-using, or walker-using older adults (62 and older) ambulated at a self-selected pace for 100 m wearing all activity monitors simultaneously. The criterion measure was directly observed steps. Intraclass correlation coefficients (ICC), mean percent error and mean absolute percent error, equivalency, and Bland-Altman plots were used to assess accuracy. RESULTS: Nonimpaired adults steps were underestimated by 4.4% for StepWatch (ICC = 0.87), 2.6% for Fitbit One (ICC = 0.80), 4.5% for Omron HJ-112 (ICC = 0.72), 26.9% for Fitbit Flex (ICC = 0.15), and 2.9% for Jawbone UP (ICC = 0.55). Impaired adults steps were underestimated by 3.5% for StepWatch (ICC = 0.91), 1.7% for Fitbit One (ICC = 0.96), 3.2% for Omron HJ-112 (ICC = 0.89), 16.3% for Fitbit Flex (ICC = 0.25), and 8.4% for Jawbone UP (ICC = 0.50). Cane-user and walker-user steps were underestimated by StepWatch by 1.8% (ICC = 0.98) and 1.3% (ICC = 0.99), respectively, where all other monitors underestimated steps by >11.5% (ICCs < 0.05). CONCLUSIONS: StepWatch, Omron HJ-112, Fitbit One, and Jawbone UP appeared accurate at measuring steps in older adults with nonimpaired and impaired ambulation during a self-paced walking test. StepWatch also appeared accurate at measuring steps in cane-users

    Behavioral periodicity detection from 24h wrist accelerometry and associations with cardiometabolic risk and health-related quality of life

    Get PDF
    Periodicities (repeating patterns) are observed in many human behaviors. Their strength may capture untapped patterns that incorporate sleep, sedentary, and active behaviors into a single metric indicative of better health. We present a framework to detect periodicities from longitudinal wrist-worn accelerometry data. GENEActiv accelerometer data were collected from 20 participants (17 men, 3 women, aged 35–65) continuously for (range: 13.9 to 102.0) consecutive days. Cardiometabolic risk biomarkers and health-related quality of life metrics were assessed at baseline. Periodograms were constructed to determine patterns emergent from the accelerometer data. Periodicity strength was calculated using circular autocorrelations for time-lagged windows. The most notable periodicity was at 24 h, indicating a circadian rest-activity cycle; however, its strength varied significantly across participants. Periodicity strength was most consistently associated with LDL-cholesterol (’s = 0.40–0.79, ’s < 0.05) and triglycerides (’s = 0.68–0.86, ’s < 0.05) but also associated with hs-CRP and health-related quality of life, even after adjusting for demographics and self-rated physical activity and insomnia symptoms. Our framework demonstrates a new method for characterizing behavior patterns longitudinally which captures relationships between 24 h accelerometry data and health outcomes

    From TVs to Tablets: The Relation between Device-Specific Screen Time and Health-Related Behaviors and Characteristics

    Get PDF
    Background The purpose of this study was to examine whether extended use of a variety of screen-based devices, in addition to television, was associated with poor dietary habits and other health-related characteristics and behaviors among US adults. The recent phenomenon of binge-watching was also explored. Methods A survey to assess screen time across multiple devices, dietary habits, sleep duration and quality, perceived stress, self-rated health, physical activity, and body mass index, was administered to a sample of US adults using the Qualtrics platform and distributed via Amazon Mechanical Turk (MTurk). Participants were adults 18 years of age and older, English speakers, current US residents, and owners of a television and at least one other device with a screen. Three different screen time categories (heavy, moderate, and light) were created for total screen time, and separately for screen time by type of screen, based on distribution tertiles. Kruskal-Wallis tests were conducted to examine differences in dietary habits and health-related characteristics between screen time categories. Results Aggregate screen time across all devices totaled 17.5 h per day for heavy users. Heavy users reported the least healthful dietary patterns and the poorest health-related characteristics – including self-rated health – compared to moderate and light users. Moreover, unique dietary habits emerged when examining dietary patterns by type of screen separately, such that heavy users of TV and smartphone displayed the least healthful dietary patterns compared to heavy users of TV-connected devices, laptop, and tablet. Binge-watching was also significantly associated with less healthy dietary patterns, including frequency of fast-food consumption as well as eating family meals in front of a television, and perceived stress. Conclusions The present study found that poorer dietary choices, as well as other negative health-related impacts, occurred more often as the viewing time of a variety of different screen-based devices increased in a sample of US adults. Future research is needed to better understand what factors among different screen-based devices might affect health behaviors and in turn health-related outcomes. Research is also required to better understand how binge-watching behavior contributes impacts health-related behaviors and characteristics

    Assessing the Pragmatic Nature of Mobile Health Interventions Promoting Physical Activity: Systematic Review and Meta-analysis

    Get PDF
    Background: Mobile health (mHealth) apps can promote physical activity; however, the pragmatic nature (ie, how well research translates into real-world settings) of these studies is unknown. The impact of study design choices, for example, intervention duration, on intervention effect sizes is also understudied. Objective: This review and meta-analysis aims to describe the pragmatic nature of recent mHealth interventions for promoting physical activity and examine the associations between study effect size and pragmatic study design choices. Methods: The PubMed, Scopus, Web of Science, and PsycINFO databases were searched until April 2020. Studies were eligible if they incorporated apps as the primary intervention, were conducted in health promotion or preventive care settings, included a device-based physical activity outcome, and used randomized study designs. Studies were assessed using the Reach, Effectiveness, Adoption, Implementation, Maintenance (RE-AIM) and Pragmatic-Explanatory Continuum Indicator Summary-2 (PRECIS-2) frameworks. Study effect sizes were summarized using random effect models, and meta-regression was used to examine treatment effect heterogeneity by study characteristics. Results: Overall, 3555 participants were included across 22 interventions, with sample sizes ranging from 27 to 833 (mean 161.6, SD 193.9, median 93) participants. The study populations’ mean age ranged from 10.6 to 61.5 (mean 39.6, SD 6.5) years, and the proportion of males included across all studies was 42.8% (1521/3555). Additionally, intervention lengths varied from 2 weeks to 6 months (mean 60.9, SD 34.9 days). The primary app- or device-based physical activity outcome differed among interventions: most interventions (17/22, 77%) used activity monitors or fitness trackers, whereas the rest (5/22, 23%) used app-based accelerometry measures. Data reporting across the RE-AIM framework was low (5.64/31, 18%) and varied within specific dimensions (Reach=44%; Effectiveness=52%; Adoption=3%; Implementation=10%; Maintenance=12.4%). PRECIS-2 results indicated that most study designs (14/22, 63%) were equally explanatory and pragmatic, with an overall PRECIS-2 score across all interventions of 2.93/5 (SD 0.54). The most pragmatic dimension was flexibility (adherence), with an average score of 3.73 (SD 0.92), whereas follow-up, organization, and flexibility (delivery) appeared more explanatory with means of 2.18 (SD 0.75), 2.36 (SD 1.07), and 2.41 (SD 0.72), respectively. An overall positive treatment effect was observed (Cohen d=0.29, 95% CI 0.13-0.46). Meta-regression analyses revealed that more pragmatic studies (−0.81, 95% CI −1.36 to −0.25) were associated with smaller increases in physical activity. Treatment effect sizes were homogenous across study duration, participants’ age and gender, and RE-AIM scores
    corecore