41 research outputs found

    Flexibility of Crab Chemosensory Hairs Enables Flicking Antennules to Sniff

    Get PDF
    The first step in smelling is capture of odorant molecules from the surrounding fluid. We used lateral flagella of olfactory antennules of crabs Callinectes sapidus to study the physical process of odor capture by antennae bearing dense tufts of hair-like chemosensory sensilla (aesthetascs). Fluid flow around and through aesthetasc arrays on dynamically scaled models of lateral flagella of C. sapidus was measured by particle image velocimetry to determine how antennules sample the surrounding water when they flick. Models enabled separate evaluation of the effects of flicking speed, aesthetasc spacing, and antennule orientation. We found that crab antennules, like those of other malacostracan crustaceans, take a discrete water sample during each flick by having a rapid downstroke, during which water flows into the aesthetasc array, and a slow recovery stroke, when water is trapped in the array and odorants have time to diffuse to aesthetascs. However, unlike antennules of crustaceans with sparse aesthetasc arrays, crabs enhance sniffing via additional mechanisms: 1) Aesthetascs are flexible and splay as a result of the hydrodynamic drag during downstrokes, then clump together during return strokes; and 2) antennules flick with aesthetascs on the upstream side of the stalk during downstrokes, but are hidden downstream during return strokes. Aiming aesthetascs into ambient flow maintains sniffing. When gaps between aesthetascs are wide, changes in antennule speed are more effective at altering flow through the array than when gaps are narrow. Nonetheless, if crabs had fixed gap widths, their ability to take discrete samples of their odorant environment would be diminished

    Influence of the Seagrass, Zostera marina, on Wave Attenuation and Bed Shear Stress Within a Shallow Coastal Bay

    Get PDF
    Local effects of flow interaction with seagrass structure modify meadow scale hydrodynamics, resulting in lower current velocities and wave heights within a seagrass meadow. This attenuation promotes the deposition of suspended sediment, increasing the light available locally to benthic organisms. To elucidate the relationship between small-scale hydrodynamics that occur at the sea floor and the meadow scale effects of seagrass, high resolution velocity profiles were recorded adjacent to the sediment-water interface within a Zostera marina seagrass meadow in South Bay, Virginia. Additionally, instrumentation was deployed across the meadow to seasonally monitor corresponding changes in wave height across the seagrass meadow. Results show that wave height was reduced by 25–49% compared to an adjacent bare site, and by 13–38% compared to an analytical model of wave attenuation over an unvegetated seafloor with the same bathymetry. The greatest attenuation of wave height occurred during the spring and summer when seagrass biomass was greatest, while the lowest attenuation occurred in winter, corresponding to periods of minimal seagrass biomass. Significant wave height attenuation coefficients, αw, calculated for the meadow ranged from αw = 0.49 in spring to 0.19 during winter, but were highly dependent on wave conditions, with greater αw for larger wave heights and longer period waves. Within the seagrass meadow during summer, the highest measured bed shear stress was τbed = 0.034 ± 0.022 Pa, which occurred during peak wave conditions. This suggests that during high biomass conditions, the bed shear stress rarely exceeds the critical bed shear, τcrit = 0.04 Pa necessary to initiate sediment resuspension. This is in contrast to the bare site which showed elevated values of τbed above the critical threshold across all seasons. These findings suggest the seagrass meadow does exert significant control over both wave heights and the hydrodynamic conditions at the sediment-water interface, and this control is due to the attenuation of wave motion by drag induced from the seagrass over the expanse of the meadow

    Is It Time for Federal Regulation of the Tax Preparer Industry? New Insights from Legal and Empirical Developments

    Get PDF
    The tax preparer industry is unusual in that it involves the interpretation of an intricate and complicated tax code, but imposes no minimum requirements of competency because the industry is largely unregulated. A study by the Government Accountability Office (GAO) indicated that unregulated tax preparers commit significantly higher error rates and, based in part on that study’s findings, the Internal Revenue Service (IRS) attempted to regulate the tax preparer industry nationwide under the Registered Tax Return Preparer (RTRP) regime. This RTRP program was invalidated in Loving v. IRS, however, leaving the industry largely unregulated, except in the small minority of states that have enacted tax preparer regulations

    Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phylogenetic analyses provide a framework for examining the evolution of morphological and molecular diversity, interpreting patterns in biogeography, and achieving a stable classification. The generic and suprageneric relationships within mosquitoes (Diptera: Culicidae) are poorly resolved, making these subjects difficult to address.</p> <p>Results</p> <p>We carried out maximum parsimony and maximum likelihood, including Bayesian, analyses on a data set consisting of six nuclear genes and 80 morphological characters to assess their ability to resolve relationships among 25 genera. We also estimated divergence times based on sequence data and fossil calibration points, using Bayesian relaxed clock methods. Strong support was recovered for the basal position and monophyly of the subfamily Anophelinae and the tribes Aedini and Sabethini of subfamily Culicinae. Divergence times for major culicid lineages date to the early Cretaceous.</p> <p>Conclusions</p> <p>Deeper relationships within the family remain poorly resolved, suggesting the need for additional taxonomic sampling. Our results support the notion of rapid radiations early in the diversification of mosquitoes.</p

    Resuspension by fish facilitates the transport and redistribution of coastal sediments

    Get PDF
    Author Posting. © Association for the Sciences of Limnology and Oceanography, 2012. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Limnology and Oceanography 57 (2012): 945-958, doi:10.4319/lo.2012.57.4.0945.Oxygen availability restricts groundfish to the oxygenated, shallow margins of Saanich Inlet, an intermittently anoxic fjord in British Columbia, Canada. New and previously reported 210Pb measurements in sediment cores compared with flux data from sediment traps indicate major focusing of sediments from the oxygenated margins to the anoxic basin seafloor. We present environmental and experimental evidence that groundfish activity in the margins is the major contributor to this focusing. Fine particles resuspended by groundfish are advected offshore by weak bottom currents, eventually settling in the anoxic basin. Transmittance and sediment trap data from the water column show that this transport process maintains an intermediate nepheloid layer (INL) in the center of the Inlet. This INL is located above the redox interface and is unrelated to water density shifts in the water column. We propose that this INL is shaped by the distribution of groundfish (as resuspension sources) along the slope and hence by oxygen availability to these fish. We support this conclusion with a conceptual model of the resuspension and offshore transport of sediment. This fish-induced transport mechanism for sediments is likely to enhance organic matter decomposition in oxygenated sediments and its sequestration in anoxic seafloors.The VENUS Project and University of Victoria supported the ship and submersible time for field experiments, and the U.S. Geological Survey and Coastal and Marine Geological Program generously supported J.C. The project was supported by Discovery Grants from the Natural Sciences and Engineering Research Council of Canada to V.T. and P.S. and a Yohay Ben-Nun fellowship and Moshe Shilo Center for Marine Biogeochemistry Fund award to T.K

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery

    Biophysical Constraints on Optimal Patch Lengths for Settlement of a Reef-Building Bivalve

    Get PDF
    <div><p>Reef-building species form discrete patches atop soft sediments, and reef restoration often involves depositing solid material as a substrate for larval settlement and growth. There have been few theoretical efforts to optimize the physical characteristics of a restored reef patch to achieve high recruitment rates. The delivery of competent larvae to a reef patch is influenced by larval behavior and by physical habitat characteristics such as substrate roughness, patch length, current speed, and water depth. We used a spatial model, the “hitting-distance” model, to identify habitat characteristics that will jointly maximize both the settlement probability and the density of recruits on an oyster reef (<i>Crassostrea virginica</i>). Modeled larval behaviors were based on laboratory observations and included turbulence-induced diving, turbulence-induced passive sinking, and neutral buoyancy. Profiles of currents and turbulence were based on velocity profiles measured in coastal Virginia over four different substrates: natural oyster reefs, mud, and deposited oyster and whelk shell. Settlement probabilities were higher on larger patches, whereas average settler densities were higher on smaller patches. Larvae settled most successfully and had the smallest optimal patch length when diving over rough substrates in shallow water. Water depth was the greatest source of variability, followed by larval behavior, substrate roughness, and tidal current speed. This result suggests that the best way to maximize settlement on restored reefs is to construct patches of optimal length for the water depth, whereas substrate type is less important than expected. Although physical patch characteristics are easy to measure, uncertainty about larval behavior remains an obstacle for predicting settlement patterns. The mechanistic approach presented here could be combined with a spatially explicit metapopulation model to optimize the arrangement of reef patches in an estuary or region for greater sustainability of restored habitats.</p></div

    Joint settlement probability of actively diving larvae.

    No full text
    <p>Joint settlement probability vs. current speed and reef patch length for larvae settling over natural reefs (A, C, E) and deposited oyster shell (B, D, F) in water depths of m (A–B), m (C–D), and m (E–F). White dashed lines indicate optimal patch lengths at each current speed, and indicates the overall optimal patch length and current speed where joint settlement probability reaches a maximum .</p
    corecore