312 research outputs found

    Dystrophin glycoprotein complex dysfunction:a regulatory link between muscular dystrophy and cancer cachexia

    Get PDF
    SummaryCachexia contributes to nearly a third of all cancer deaths, yet the mechanisms underlying skeletal muscle wasting in this syndrome remain poorly defined. We report that tumor-induced alterations in the muscular dystrophy-associated dystrophin glycoprotein complex (DGC) represent a key early event in cachexia. Muscles from tumor-bearing mice exhibited membrane abnormalities accompanied by reduced levels of dystrophin and increased glycosylation on DGC proteins. Wasting was accentuated in tumor mdx mice lacking a DGC but spared in dystrophin transgenic mice that blocked induction of muscle E3 ubiquitin ligases. Furthermore, DGC deregulation correlated positively with cachexia in patients with gastrointestinal cancers. Based on these results, we propose that, similar to muscular dystrophy, DGC dysfunction plays a critical role in cancer-induced wasting

    Antiapoptotic Actions of Methyl Gallate on Neonatal Rat Cardiac Myocytes Exposed to H 2

    Get PDF
    Reactive oxygen species trigger cardiomyocyte cell death via increased oxidative stress and have been implicated in the pathogenesis of cardiovascular diseases. The prevention of cardiomyocyte apoptosis is a putative therapeutic target in cardioprotection. Polyphenol intake has been associated with reduced incidences of cardiovascular disease and better overall health. Polyphenols like epigallocatechin gallate (EGCG) can reduce apoptosis of cardiomyocytes, resulting in better health outcomes in animal models of cardiac disorders. Here, we analyzed whether the antioxidant N-acetyl cysteine (NAC) or polyphenols EGCG, gallic acid (GA) or methyl gallate (MG) can protect cardiomyocytes from cobalt or H2O2-induced stress. We demonstrate that MG can uphold viability of neonatal rat cardiomyocytes exposed to H2O2 by diminishing intracellular ROS, maintaining mitochondrial membrane potential, augmenting endogenous glutathione, and reducing apoptosis as evidenced by impaired Annexin V/PI staining, prevention of DNA fragmentation, and cleaved caspase-9 accumulation. These findings suggest a therapeutic value for MG in cardioprotection

    Transcriptomic analysis of field-droughted sorghum from seedling to maturity reveals biotic and metabolic responses.

    Get PDF
    Drought is the most important environmental stress limiting crop yields. The C4 cereal sorghum [Sorghum bicolor (L.) Moench] is a critical food, forage, and emerging bioenergy crop that is notably drought-tolerant. We conducted a large-scale field experiment, imposing preflowering and postflowering drought stress on 2 genotypes of sorghum across a tightly resolved time series, from plant emergence to postanthesis, resulting in a dataset of nearly 400 transcriptomes. We observed a fast and global transcriptomic response in leaf and root tissues with clear temporal patterns, including modulation of well-known drought pathways. We also identified genotypic differences in core photosynthesis and reactive oxygen species scavenging pathways, highlighting possible mechanisms of drought tolerance and of the delayed senescence, characteristic of the stay-green phenotype. Finally, we discovered a large-scale depletion in the expression of genes critical to arbuscular mycorrhizal (AM) symbiosis, with a corresponding drop in AM fungal mass in the plants' roots

    Inference of population structure using multilocus genotype data: dominant markers and null alleles

    Get PDF
    Dominant markers such as amplified fragment length polymorphisms (AFLPs) provide an economical way of surveying variation at many loci. However, the uncertainty about the underlying genotypes presents a problem for statistical analysis. Similarly, the presence of null alleles and the limitations of genotype calling in polyploids mean that many conventional analysis methods are invalid for many organisms. Here we present a simple approach for accounting for genotypic ambiguity in studies of population structure and apply it to AFLP data from whitefish. The approach is implemented in the program structure version 2.2, which is available from http://pritch.bsd.uchicago.edu/structure.html

    SCHISTOX: An individual based model for the epidemiology and control of schistosomiasis.

    Get PDF
    A stochastic individual based model, SCHISTOX, has been developed for the study of schistosome transmission dynamics and the impact of control by mass drug administration. More novel aspects that can be investigated include individual level adherence and access to treatment, multiple communities, human sex population dynamics, and implementation of a potential vaccine. Many of the model parameters have been estimated within previous studies and have been shown to vary between communities, such as the age-specific contact rates governing the age profiles of infection. However, uncertainty remains as there are wide ranges for certain parameter values and a few remain relatively unknown. We analyse the model dynamics by parameterizing it with published parameter values. We also discuss the development of SCHISTOX in the form of a publicly available open-source GitHub repository. The next key development stage involves validating the model by calibrating to epidemiological data

    The role of liquid ink transport in the direct placement of quantum dot emitters onto sub-micrometer antennas by dip-pen nanolithography

    Full text link
    Dip‐pen nanolithography (DPN) is used to precisely position core/thick‐shell (“giant”) quantum dots (gQDs; ≄10 nm in diameter) exclusively on top of silicon nanodisk antennas (≈500 nm diameter pillars with a height of ≈200 nm), resulting in periodic arrays of hybrid nanostructures and demonstrating a facile integration strategy toward next‐generation quantum light sources. A three‐step reading‐inking‐writing approach is employed, where atomic force microscopy (AFM) images of the pre‐patterned substrate topography are used as maps to direct accurate placement of nanocrystals. The DPN “ink” comprises gQDs suspended in a non‐aqueous carrier solvent, o‐dichlorobenzene. Systematic analyses of factors influencing deposition rate for this non‐conventional DPN ink are described for flat substrates and used to establish the conditions required to achieve small (sub‐500 nm) feature sizes, namely: dwell time, ink‐substrate contact angle and ink volume. Finally, it is shown that the rate of solvent transport controls the feature size in which gQDs are found on the substrate, but also that the number and consistency of nanocrystals deposited depends on the stability of the gQD suspension. Overall, the results lay the groundwork for expanded use of nanocrystal liquid inks and DPN for fabrication of multi‐component nanostructures that are challenging to create using traditional lithographic techniques.F.D. and J.W. contributed equally to this work. F.D. was supported by postdoctoral funding of the Center for Integrated Nanotechnologies (CINT), an Office of Science (OS) Nanoscale Science Research Center (NSRC) and User Facility operated for the U.S. Department of Energy (DOE) by Los Alamos National Laboratory (LANL; Contract No. DE-AC52-06NA25396) and Sandia National Laboratories (Contract No. DE-NA-0003525), and the work was performed in large part at CINT and contributed to CINT User Project, C2013B0048. J.W., P.A.S., S.M., M.T., and J.A.H. acknowledge LANL Directed Research and Development Funds. C.J.S. is a CINT-funded technical specialist. M.R.B. was funded by an LANL Director's Postdoctoral Fellowship, and A.M.D. by a Single Investigator Small Group Research Grant (2009LANL1096), Division of Materials Science and Engineering (MSE), Office of Basic Energy Sciences (OBES), OS, DOE. Los Alamos National Laboratory, an affirmative action equal opportunity employer, is operated by Los Alamos National Security, LLC, for the National Nuclear Security Administration of the DOE under Contract No. DE-AC52-06NA25396. (Center for Integrated Nanotechnologies (CINT), an Office of Science (OS) Nanoscale Science Research Center (NSRC); DE-AC52-06NA25396 - U.S. Department of Energy (DOE); DE-NA-0003525 - U.S. Department of Energy (DOE); C2013B0048 - CINT User Project; LANL Directed Research and Development Funds; CINT; LANL Director's Postdoctoral Fellowship; 2009LANL1096 - Single Investigator Small Group Research Grant, Division of Materials Science and Engineering (MSE), Office of Basic Energy Sciences (OBES), OS, DOE; DE-AC52-06NA25396 - National Nuclear Security Administration of the DOE)Accepted manuscrip

    Interrupting transmission of soil-transmitted helminths : a study protocol for cluster randomised trials evaluating alternative treatment strategies and delivery systems in Kenya

    Get PDF
    Introduction: In recent years, an unprecedented emphasis has been given to the control of neglected tropical diseases, including soil-transmitted helminths (STHs). The mainstay of STH control is school-based deworming (SBD), but mathematical modelling has shown that in all but very low transmission settings, SBD is unlikely to interrupt transmission, and that new treatment strategies are required. This study seeks to answer the question: is it possible to interrupt the transmission of STH, and, if so, what is the most costeffective treatment strategy and delivery system to achieve this goal? Methods and analysis: Two cluster randomised trials are being implemented in contrasting settings in Kenya. The interventions are annual mass anthelmintic treatment delivered to preschool- and school-aged children, as part of a national SBD programme, or to entire communities, delivered by community health workers. Allocation to study group is by cluster, using predefined units used in public health provision—termed community units (CUs). CUs are randomised to one of three groups: receiving either (1) annual SBD; (2) annual community-based deworming (CBD); or (3) biannual CBD. The primary outcome measure is the prevalence of hookworm infection, assessed by four cross-sectional surveys. Secondary outcomes are prevalence of Ascaris lumbricoides and Trichuris trichiura, intensity of species infections and treatment coverage. Costs and cost-effectiveness will be evaluated. Among a random subsample of participants, worm burden and proportion of unfertilised eggs will be assessed longitudinally. A nested process evaluation, using semistructured interviews, focus group discussions and a stakeholder analysis, will investigate the community acceptability, feasibility and scale-up of each delivery system. Ethics and dissemination: Study protocols have been reviewed and approved by the ethics committees of the Kenya Medical Research Institute and National Ethics Review Committee, and London School of Hygiene and Tropical Medicine. The study has a dedicated web site. Trial registration number: NCT0239777

    Reducing the Antigen Prevalence Target Threshold for Stopping and Restarting Mass Drug Administration for Lymphatic Filariasis Elimination: A Model-Based Cost-effectiveness Simulation in Tanzania, India and Haiti

    Get PDF
    Background The Global Programme to Eliminate Lymphatic Filariasis (GPELF) aims to reduce and maintain infection levels through mass drug administration (MDA), but there is evidence of ongoing transmission after MDA in areas where Culex mosquitoes are the main transmission vector, suggesting that a more stringent criterion is required for MDA decision making in these settings. Methods We use a transmission model to investigate how a lower prevalence threshold (<1% antigenemia [Ag] prevalence compared with <2% Ag prevalence) for MDA decision making would affect the probability of local elimination, health outcomes, the number of MDA rounds, including restarts, and program costs associated with MDA and surveys across different scenarios. To determine the cost-effectiveness of switching to a lower threshold, we simulated 65% and 80% MDA coverage of the total population for different willingness to pay per disability-adjusted life-year averted for India (446.07),Tanzania(446.07), Tanzania (389.83), and Haiti (219.84).ResultsOurresultssuggestthatwithalowerAgthreshold,thereisasmallproportionofsimulationswhereextraroundsarerequiredtoreachthetarget,butthisalsoreducestheneedtorestartMDAlaterintheprogram.For80219.84). Results Our results suggest that with a lower Ag threshold, there is a small proportion of simulations where extra rounds are required to reach the target, but this also reduces the need to restart MDA later in the program. For 80% coverage, the lower threshold is cost-effective across all baseline prevalences for India, Tanzania, and Haiti. For 65% MDA coverage, the lower threshold is not cost-effective due to additional MDA rounds, although it increases the probability of local elimination. Valuing the benefits of elimination to align with the GPELF goals, we find that a willingness to pay per capita government expenditure of approximately 1000–$4000 for 1% increase in the probability of local elimination would be required to make a lower threshold cost-effective. Conclusions Lower Ag thresholds for stopping MDAs generally mean a higher probability of local elimination, reducing long-term costs and health impacts. However, they may also lead to an increased number of MDA rounds required to reach the lower threshold and, therefore, increased short-term costs. Collectively, our analyses highlight that lower target Ag thresholds have the potential to assist programs in achieving lymphatic filariasis goals

    Understanding the transmission dynamics of Leishmania donovani to provide robust evidence for interventions to eliminate visceral leishmaniasis in Bihar, India.

    Get PDF
    Visceral Leishmaniasis (VL) is a neglected vector-borne disease. In India, it is transmitted to humans by Leishmania donovani-infected Phlebotomus argentipes sand flies. In 2005, VL was targeted for elimination by the governments of India, Nepal and Bangladesh by 2015. The elimination strategy consists of rapid case detection, treatment of VL cases and vector control using indoor residual spraying (IRS). However, to achieve sustained elimination of VL, an appropriate post elimination surveillance programme should be designed, and crucial knowledge gaps in vector bionomics, human infection and transmission need to be addressed. This review examines the outstanding knowledge gaps, specifically in the context of Bihar State, India.The knowledge gaps in vector bionomics that will be of immediate benefit to current control operations include better estimates of human biting rates and natural infection rates of P. argentipes, with L. donovani, and how these vary spatially, temporally and in response to IRS. The relative importance of indoor and outdoor transmission, and how P. argentipes disperse, are also unknown. With respect to human transmission it is important to use a range of diagnostic tools to distinguish individuals in endemic communities into those who: 1) are to going to progress to clinical VL, 2) are immune/refractory to infection and 3) have had past exposure to sand flies.It is crucial to keep in mind that close to elimination, and post-elimination, VL cases will become infrequent, so it is vital to define what the surveillance programme should target and how it should be designed to prevent resurgence. Therefore, a better understanding of the transmission dynamics of VL, in particular of how rates of infection in humans and sand flies vary as functions of each other, is required to guide VL elimination efforts and ensure sustained elimination in the Indian subcontinent. By collecting contemporary entomological and human data in the same geographical locations, more precise epidemiological models can be produced. The suite of data collected can also be used to inform the national programme if supplementary vector control tools, in addition to IRS, are required to address the issues of people sleeping outside
    • 

    corecore