3 research outputs found

    Lipoprotein(a) Concentration and Risks of Cardiovascular Disease and Diabetes

    Get PDF
    Publisher's version (útgefin grein)Background: Lipoprotein(a) [Lp(a)] is a causal risk factor for cardiovascular diseases that has no established therapy. The attribute of Lp(a) that affects cardiovascular risk is not established. Low levels of Lp(a) have been associated with type 2 diabetes (T2D). Objectives: This study investigated whether cardiovascular risk is conferred by Lp(a) molar concentration or apolipoprotein(a) [apo(a)] size, and whether the relationship between Lp(a) and T2D risk is causal. Methods: This was a case-control study of 143,087 Icelanders with genetic information, including 17,715 with coronary artery disease (CAD) and 8,734 with T2D. This study used measured and genetically imputed Lp(a) molar concentration, kringle IV type 2 (KIV-2) repeats (which determine apo(a) size), and a splice variant in LPA associated with small apo(a) but low Lp(a) molar concentration to disentangle the relationship between Lp(a) and cardiovascular risk. Loss-of-function homozygotes and other subjects genetically predicted to have low Lp(a) levels were evaluated to assess the relationship between Lp(a) and T2D. Results: Lp(a) molar concentration was associated dose-dependently with CAD risk, peripheral artery disease, aortic valve stenosis, heart failure, and lifespan. Lp(a) molar concentration fully explained the Lp(a) association with CAD, and there was no residual association with apo(a) size. Homozygous carriers of loss-of-function mutations had little or no Lp(a) and increased the risk of T2D. Conclusions: Molar concentration is the attribute of Lp(a) that affects risk of cardiovascular diseases. Low Lp(a) concentration (bottom 10%) increases T2D risk. Pharmacologic reduction of Lp(a) concentration in the 20% of individuals with the greatest concentration down to the population median is predicted to decrease CAD risk without increasing T2D risk.Peer Reviewe

    Skurðaðgerðir við hálsæðaþrengslum : athygli vakin á niðurstöðum erlendra rannsókna

    No full text
    Neðst á síðunni er hægt að nálgast greinina í heild sinni með því að smella á hlekkinn View/OpenRek frá hálsæðaþrengslum er alvarlegt fyrirbæri, sem valdið getur óbætanlegum skaða á miðtaugakerfi eða dauða. Skaðann er ekki hægt að bæta en má hinsvegar fyrirbyggja með lyfjum og/eða skurðaðgerð. Í greininni er gerð grein fyrir niðurstöðum tveggja rannsókna sem visa veginn í fyrirbyggjandi skurðaðgerðum gegn þessum sjúkdómi. Gefið er yfirlit yfir núverandi meðferðarmöguleika

    Large-Scale Screening for Monogenic and Clinically Defined Familial Hypercholesterolemia in Iceland.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked DownloadObjective: Familial hypercholesterolemia (FH) is traditionally defined as a monogenic disease characterized by severely elevated LDL-C (low-density lipoprotein cholesterol) levels. In practice, FH is commonly a clinical diagnosis without confirmation of a causative mutation. In this study, we sought to characterize and compare monogenic and clinically defined FH in a large sample of Icelanders. Approach and Results: We whole-genome sequenced 49 962 Icelanders and imputed the identified variants into an overall sample of 166 281 chip-genotyped Icelanders. We identified 20 FH mutations in LDLR, APOB, and PCSK9 with combined prevalence of 1 in 836. Monogenic FH was associated with severely elevated LDL-C levels and increased risk of premature coronary disease, aortic valve stenosis, and high burden of coronary atherosclerosis. We used a modified version of the Dutch Lipid Clinic Network criteria to screen for the clinical FH phenotype among living adult participants (N=79 058). Clinical FH was found in 2.2% of participants, of whom only 5.2% had monogenic FH. Mutation-negative clinical FH has a strong polygenic basis. Both individuals with monogenic FH and individuals with mutation-negative clinical FH were markedly undertreated with cholesterol-lowering medications and only a minority attained an LDL-C target of <2.6 mmol/L (<100 mg/dL; 11.0% and 24.9%, respectively) or <1.8 mmol/L (<70 mg/dL; 0.0% and 5.2%, respectively), as recommended for primary prevention by European Society of Cardiology/European Atherosclerosis Society cholesterol guidelines. Conclusions: Clinically defined FH is a relatively common phenotype that is explained by monogenic FH in only a minority of cases. Both monogenic and clinical FH confer high cardiovascular risk but are markedly undertreated.Landspitali University Hospital Research Fun
    corecore