1,624 research outputs found

    The Effects of radial inflow of gas and galactic fountains on the chemical evolution of M31

    Full text link
    Galactic fountains and radial gas flows are very important ingredients in modeling the chemical evolution of galactic disks. Our aim here is to study the effects of galactic fountains and radial gas flows in the chemical evolution of the disk of M31. We adopt a ballistic method to study the effects of galactic fountains on the chemical enrichment of the M31 disk. We find that the landing coordinate for the fountains in M31 is no more than 1 kpc from the starting point, thus producing negligible effect on the chemical evolution of the disk. We find that the delay time in the enrichment process due to fountains is no longer than 100 Myr and this timescale also produces negligible effects on the results. Then, we compute the chemical evolution of the M31 disk with radial gas flows produced by the infall of extragalactic material and fountains. We find that a moderate inside-out formation of the disk coupled with radial flows of variable speed can very well reproduce the observed gradient. We discuss also the effects of other parameters such a threshold in the gas density for star formation and an efficiency of star formation varying with the galactic radius. We conclude that the most important physical processes in creating disk gradients are the inside-out formation and the radial gas flows. More data on abundance gradients both locally and at high redshift are necessary to confirm this conclusion.Comment: Accepted by A&

    Loss of star forming gas in SDSS galaxies

    Full text link
    Using the star formation rates from the SDSS galaxy sample, extracted using the MOPED algorithm, and the empirical Kennicutt law relating star formation rate to gas density, we calculate the time evolution of the gas fraction as a function of the present stellar mass. We show how the gas-to-stars ratio varies with stellar mass, finding good agreement with previous results for smaller samples at the present epoch. For the first time we show clear evidence for progressive gas loss with cosmic epoch, especially in low-mass systems. We find that galaxies with small stellar masses have lost almost all of their cold baryons over time, whereas the most massive galaxies have lost little. Our results also show that the most massive galaxies have evolved faster and turned most of their gas into stars at an early time, thus strongly supporting a downsizing scenario for galaxy evolution.Comment: 29 pages, 9 figures, ApJ, accepte

    Chemical evolution of the Galactic Center

    Get PDF
    In recent years, the Galactic Center (GC) region (200 pc in radius) has been studied in detail with spectroscopic stellar data as well as an estimate of the ongoing star formation rate. The aims of this paper are to study the chemical evolution of the GC region by means of a detailed chemical evolution model and to compare the results with high resolution spectroscopic data in order to impose constraints on the GC formation history.The chemical evolution model assumes that the GC region formed by fast infall of gas and then follows the evolution of alpha-elements and Fe. We test different initial mass functions (IMFs), efficiencies of star formation and gas infall timescales. To reproduce the currently observed star formation rate, we assume a late episode of star formation triggered by gas infall/accretion. We find that, in order to reproduce the [alpha/Fe] ratios as well as the metallicity distribution function observed in GC stars, the GC region should have experienced a main early strong burst of star formation, with a star formation efficiency as high as 25 Gyr^{-1}, occurring on a timescale in the range 0.1-0.7 Gyr, in agreement with previous models of the entire bulge. Although the small amount of data prevents us from drawing firm conclusions, we suggest that the best IMF should contain more massive stars than expected in the solar vicinity, and the last episode of star formation, which lasted several hundred million years, should have been triggered by a modest episode of gas infall/accretion, with a star formation efficiency similar to that of the previous main star formation episode. This last episode of star formation produces negligible effects on the abundance patterns and can be due to accretion of gas induced by the bar. Our results exclude an important infall event as a trigger for the last starburst.Comment: 10 pages, 8 figures, accepted for publication in MNRA

    On the origin of the helium-rich population in the peculiar globular cluster Omega Centauri

    Full text link
    In this contribution we discuss the origin of the extreme helium-rich stars which inhabit the blue main sequence (bMS) of the Galactic globular cluster Omega Centauri. In a scenario where the cluster is the surviving remnant of a dwarf galaxy ingested by the Milky Way many Gyr ago, the peculiar chemical composition of the bMS stars can be naturally explained by considering the effects of strong differential galactic winds, which develop owing to multiple supernova explosions in a shallow potential well.Comment: 2 pages, 1 figure, to appear in the Proceedings of IAU Symposium No. 268, Light Elements in the Universe (C. Charbonnel, M. Tosi, F. Primas, C. Chiappini, eds., Cambridge Univ. Press

    The chemical evolution of Barium and Europium in the Milky Way

    Full text link
    We compute the evolution of the abundances of barium and europium in the Milky Way and we compare our results with the observed abundances from the recent UVES Large Program "First Stars". We use a chemical evolution model which already reproduces the majority of observational constraints. We confirm that barium is a neutron capture element mainly produced in the low mass AGB stars during the thermal-pulsing phase by the 13C neutron source, in a slow neutron capture process. However, in order to reproduce the [Ba/Fe] vs. [Fe/H] as well as the Ba solar abundance, we suggest that Ba should be also produced as an r-process element by massive stars in the range 10-30 solar masses. On the other hand, europium should be only an r-process element produced in the same range of masses (10-30 solar masses), at variance with previous suggestions indicating a smaller mass range for the Eu producers. As it is well known, there is a large spread in the [Ba/Fe] and [Eu/Fe] ratios at low metallicities, although smaller in the newest data. With our model we estimate for both elements (Ba and Eu) the ranges for the r-process yields from massive stars which better reproduce the trend of the data. We find that with the same yields which are able to explain the observed trends, the large spread in the [Ba/Fe] and [Eu/Fe] ratios cannot be explained even in the context of an inhomogeneous models for the chemical evolution of our Galaxy. We therefore derive the amount by which the yields should be modified to fully account for the observed spread. We then discuss several possibilities to explain the size of the spread. We finally suggest that the production ratio of [Ba/Eu] could be almost constant in the massive stars.Comment: 14 pages, 17 figures, accepted for pubblication in A&

    On the typical timescale for the chemical enrichment from SNeIa in Galaxies

    Get PDF
    We calculate the type Ia supernova rate for different star formation histories in galaxies by adopting the most popular and recent progenitor models. We show that the timescale for the maximum in the type Ia supernova rate, which corresponds also to time of the maximum enrichment, is not unique but is a strong function of the adopted stellar lifetimes, initial mass function and star formation rate. This timescale varies from ∼40−50\sim 40-50 Myr for an instantaneous starburst to ∼\sim 0.3 Gyr for a typical elliptical galaxy to ∼4.0−5.0\sim 4.0-5.0 Gyr for a disk of a spiral Galaxy like the Milky Way. We also show that the typical timescale of 1 Gyr, often quoted as the typical timescale for the type Ia supernovae, is just the time at which, in the solar neighbourhood, the Fe production from supernovae Ia starts to become important and not the time at which SNe Ia start to explode. As a cosequence of this, a change in slope in the [O/Fe] ratio is expected in correspondance of this timescale. We conclude that the suggested lack of supernovae Ia at low metallicities produces results at variance with the observed [O/Fe] vs. [Fe/H] relation in the solar region. We also compute the supernova Ia rates for different galaxies as a function of redshift and predict an extended maximum between redshift z∼3.6z \sim 3.6 and z∼1.6z \sim 1.6 for elliptical galaxies, and two maxima, one at z∼3z \sim 3 and the other at z∼1z \sim 1, for spiral galaxies, under the assumption that galaxies start forming stars at zf∼5z_f \sim 5 and ΩM=0.3\Omega_M = 0.3, ΩΛ=0.7\Omega_{\Lambda} = 0.7.Comment: 25 pages, 6 figures, accepted for pubblication from Ap

    Chemical evolution of the bulge of M31: predictions about abundance ratios

    Full text link
    We aim at reproducing the chemical evolution of the bulge of M31 by means of a detailed chemical evolution model, including radial gas flows coming from the disk. We study the impact of the initial mass function, the star formation rate and the time scale for bulge formation on the metallicity distribution function of stars. We compute several models of chemical evolution using the metallicity distribution of dwarf stars as an observational constraint for the bulge of M31. Then, by means of the model which best reproduces the metallicity distribution function, we predict the [X/Fe] vs. [Fe/H] relations for several chemical elements (O, Mg, Si, Ca, C, N). Our best model for the bulge of M31 is obtained by means of a robust statistical method and assumes a Salpeter initial mass function, a Schmidt-Kennicutt law for star formation with an exponent k=1.5, an efficiency of star formation of ∼15±0.27 Gyr−1\sim 15\pm 0.27\, Gyr^{-1}, and an infall timescale of ∼0.10±0.03\sim 0.10\pm 0.03Gyr. Our results suggest that the bulge of M31 formed very quickly by means of an intense star formation rate and an initial mass function flatter than in the solar vicinity but similar to that inferred for the Milky Way bulge. The [α\alpha/Fe] ratios in the stars of the bulge of M31 should be high for most of the [Fe/H] range, as is observed in the Milky Way bulge. These predictions await future data to be proven.Comment: Accepted for publication by MNRA

    The cosmic dust rate across the Universe

    Get PDF
    We investigate the evolution of interstellar dust in the Universe by means of chemical evolution models of galaxies of different morphological types, reproducing the main observed features of present-day galaxies. We adopt the most updated prescriptions for dust production from supernovae and asymptotic giant branch stars as well as for dust accretion and destruction processes. Then, we study the cosmic dust rate in the framework of three different cosmological scenarios for galaxy formation: (i) a pure luminosity scenario, (ii) a number density evolution scenario, as suggested by the classical hierarchical clustering scenario and (iii) an alternative scenario, in which both spirals and ellipticals are allowed to evolve in number on an observationally motivated basis. Our results give predictions about the evolution of the dust content in different galaxies as well as the cosmic dust rate as a function of redshift. Concerning the cosmic dust rate, the best scenario is the alternative one, which predicts a peak at 2 < z < 3 and reproduces the cosmic star formation rate. We compute the evolution of the comoving dust density parameter \u3a9dust and find agreement with data for z < 0.5 in the framework of DE and alternative scenarios. Finally, the evolution of the average cosmic metallicity is presented and it shows a quite fast increase in each scenario, reaching the solar value at the present time, although most of the heavy elements are incorporated into solid grains, and therefore not observable in the gas phase
    • …
    corecore