16 research outputs found

    Oldest known pantherine skull and evolution of the tiger

    Get PDF
    The tiger is one of the most iconic extant animals, and its origin and evolution have been intensely debated. Fossils attributable to extant pantherine species-lineages are less than 2 MYA and the earliest tiger fossils are from the Calabrian, Lower Pleistocene. Molecular studies predict a much younger age for the divergence of modern tiger subspecies at <100 KYA, although their cranial morphology is readily distinguishable, indicating that early Pleistocene tigers would likely have differed markedly anatomically from extant tigers. Such inferences are hampered by the fact that well-known fossil tiger material is middle to late Pleistocene in age. Here we describe a new species of pantherine cat from Longdan, Gansu Province, China, Panthera zdanskyi sp. nov. With an estimated age of 2.55–2.16 MYA it represents the oldest complete skull of a pantherine cat hitherto found. Although smaller, it appears morphologically to be surprisingly similar to modern tigers considering its age. Morphological, morphometric, and cladistic analyses are congruent in confirming its very close affinity to the tiger, and it may be regarded as the most primitive species of the tiger lineage, demonstrating the first unequivocal presence of a modern pantherine species-lineage in the basal stage of the Pleistocene (Gelasian; traditionally considered to be Late Pliocene). This find supports a north-central Chinese origin of the tiger lineage, and demonstrates that various parts of the cranium, mandible, and dentition evolved at different rates. An increase in size and a reduction in the relative size of parts of the dentition appear to have been prominent features of tiger evolution, whereas the distinctive cranial morphology of modern tigers was established very early in their evolutionary history. The evolutionary trend of increasing size in the tiger lineage is likely coupled to the evolution of its primary prey species

    "A novel in vivo model for the study of human breast cancer metastasis using primary breast tumor-initiating cells from patient biopsies"

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The study of breast cancer metastasis depends on the use of established breast cancer cell lines that do not accurately represent the heterogeneity and complexity of human breast tumors. A tumor model was developed using primary breast tumor-initiating cells isolated from patient core biopsies that would more accurately reflect human breast cancer metastasis.</p> <p>Methods</p> <p>Tumorspheres were isolated under serum-free culture conditions from core biopsies collected from five patients with clinical diagnosis of invasive ductal carcinoma (IDC). Isolated tumorspheres were transplanted into the mammary fat pad of NUDE mice to establish tumorigenicity <it>in vivo</it>. Tumors and metastatic lesions were analyzed by hematoxylin and eosin (H+E) staining and immunohistochemistry (IHC).</p> <p>Results</p> <p>Tumorspheres were successfully isolated from all patient core biopsies, independent of the estrogen receptor α (ERα)/progesterone receptor (PR)/Her2/neu status or tumor grade. Each tumorsphere was estimated to contain 50-100 cells. Transplantation of 50 tumorspheres (1-5 × 10<sup>3 </sup>cells) in combination with Matrigel into the mammary fat pad of NUDE mice resulted in small, palpable tumors that were sustained up to 12 months post-injection. Tumors were serially transplanted three times by re-isolation of tumorspheres from the tumors and injection into the mammary fat pad of NUDE mice. At 3 months post-injection, micrometastases to the lung, liver, kidneys, brain and femur were detected by measuring content of human chromosome 17. Visible macrometastases were detected in the lung, liver and kidneys by 6 months post-injection. Primary tumors variably expressed cytokeratins, Her2/neu, cytoplasmic E-cadherin, nuclear β catenin and fibronectin but were negative for ERα and vimentin. In lung and liver metastases, variable redistribution of E-cadherin and β catenin to the membrane of tumor cells was observed. ERα was re-expressed in lung metastatic cells in two of five samples.</p> <p>Conclusions</p> <p>Tumorspheres isolated under defined culture conditions from patient core biopsies were tumorigenic when transplanted into the mammary fat pad of NUDE mice, and metastasized to multiple mouse organs. Micrometastases in mouse organs demonstrated a dormancy period prior to outgrowth of macrometastases. The development of macrometastases with organ-specific phenotypic distinctions provides a superior model for the investigation of organ-specific effects on metastatic cancer cell survival and growth.</p

    Turnover of Sex Chromosomes in the Stickleback Fishes (Gasterosteidae)

    Get PDF
    Diverse sex-chromosome systems are found in vertebrates, particularly in teleost fishes, where different systems can be found in closely related species. Several mechanisms have been proposed for the rapid turnover of sex chromosomes, including the transposition of an existing sex-determination gene, the appearance of a new sex-determination gene on an autosome, and fusions between sex chromosomes and autosomes. To better understand these evolutionary transitions, a detailed comparison of sex chromosomes between closely related species is essential. Here, we used genetic mapping and molecular cytogenetics to characterize the sex-chromosome systems of multiple stickleback species (Gasterosteidae). Previously, we demonstrated that male threespine stickleback fish (Gasterosteus aculeatus) have a heteromorphic XY pair corresponding to linkage group (LG) 19. In this study, we found that the ninespine stickleback (Pungitius pungitius) has a heteromorphic XY pair corresponding to LG12. In black-spotted stickleback (G. wheatlandi) males, one copy of LG12 has fused to the LG19-derived Y chromosome, giving rise to an X1X2Y sex-determination system. In contrast, neither LG12 nor LG19 is linked to sex in two other species: the brook stickleback (Culaea inconstans) and the fourspine stickleback (Apeltes quadracus). However, we confirmed the existence of a previously reported heteromorphic ZW sex-chromosome pair in the fourspine stickleback. The sex-chromosome diversity that we have uncovered in sticklebacks provides a rich comparative resource for understanding the mechanisms that underlie the rapid turnover of sex-chromosome systems

    Current concepts in clinical radiation oncology

    Get PDF
    corecore