416 research outputs found

    The Swiss and Dutch Health Insurance Systems: Universal Coverage and Regulated Competitive Insurance Markets

    Get PDF
    Compares systems of universal insurance coverage based on individual mandates, consumer choice of health plans, and regulated insurance market competition in Switzerland and the Netherlands. Discusses insights and implications for U.S. reform efforts

    Accurate assessment of carotid artery stenosis in atherosclerotic mice using accelerated high-resolution 3D magnetic resonance angiography

    Get PDF
    Object: High-resolution magnetic resonance angiography (MRA) enables non-invasive detection and longitudinal monitoring of atherosclerosis in mouse models of human disease. However, MRA is hampered by long acquisition times putting high demands on the physiological stability of the animal. Therefore, we evaluated the feasibility of accelerated MRA using the parallel imaging technique SENSE with regard to both lesion detection and quantification. Materials and methods: MRA acquisitions of supra-aortic vessels were performed in ApoE −/− mice that have been shown to develop atherosclerotic plaques. Findings obtained from accelerated data sets were compared to fully sampled reference data sets and histology. Results: Our results revealed only minor differences in detecting vascular lesions for data collections accelerated by factors of up to 3.3 using a four-element coil array. For vessels with a mean lumen diameter of 500μm, morphometry of stenotic lesions revealed no substantial deviations from reference (fully sampled) data for all investigated acceleration factors. For the highest acceleration factor of 3.3, an average deviation of the degree of stenosis of 4.9 ± 3.6% was found. Common carotid stenoses assessed by in vivo MRA displayed a good correlation with histological analyses (slope of linear regression = 0.97, R 2 = 0.98). Conclusion: According to the results of this work, we have demonstrated the feasibility and accuracy of accelerated high-resolution 3D ToF MRA in mice suitable for detailed depiction of mouse supra-aortic vessels and amenable to non-invasive quantification of small atherosclerotic lesion

    Modulating Sirtuin Biology and Nicotinamide Adenine Diphosphate Metabolism in Cardiovascular Disease—From Bench to Bedside

    Full text link
    Sirtuins (SIRT1–7) comprise a family of highly conserved deacetylases with distribution in different subcellular compartments. Sirtuins deacetylate target proteins depending on one common substrate, nicotinamide adenine diphosphate (NAD+), thus linking their activities to the status of cellular energy metabolism. Sirtuins had been linked to extending life span and confer beneficial effects in a wide array of immune-metabolic and cardiovascular diseases. SIRT1, SIRT3, and SIRT6 have been shown to provide protective effects in various cardiovascular disease models, by decreasing inflammation, improving metabolic profiles or scavenging oxidative stress. Sirtuins may be activated collectively by increasing their co-substrate NAD+. By supplementing NAD+ precursors, NAD+ boosters confer pan-sirtuin activation with protective cardiometabolic effects in the experimental setting: they improve endothelial dysfunction, protect from experimental heart failure, hypertension and decrease progression of liver steatosis. Different precursor molecules were applied ranging from nicotinamide (NAM), nicotinamide mononucleotide (NMN) to nicotinamide riboside (NR). Notably, not all experimental results showed protective effects. Moreover, the results are not as striking in clinical studies as in the controlled experimental setting. Species differences, (lack of) genetic heterogeneity, different metabolic pathways, dosing, administration routes and disease contexts may account for these challenges in clinical translation. At the clinical scale, caloric restriction can reduce the risks of cardiovascular disease and raise NAD+ concentration and sirtuin expression. In addition, antidiabetic drugs such as metformin or SGLT2 inhibitors may confer cardiovascular protection, indirectly via sirtuin activation. Overall, additional mechanistic insight and clinical studies are needed to better understand the beneficial effects of sirtuin activation and NAD+ boosters from bench to bedside

    Protective effects of sirtuins in cardiovascular diseases: from bench to bedside

    Get PDF
    Sirtuins (Sirt1-Sirt7) comprise a family of nicotinamide adenine dinucleotide (NAD+)-dependent enzymes. While deacetylation reflects their main task, some of them have deacylase, adenosine diphosphate-ribosylase, demalonylase, glutarylase, and desuccinylase properties. Activated upon caloric restriction and exercise, they control critical cellular processes in the nucleus, cytoplasm, and mitochondria to maintain metabolic homeostasis, reduce cellular damage and dampen inflammation—all of which serve to protect against a variety of age-related diseases, including cardiovascular pathologies. This review focuses on the cardiovascular effects of Sirt1, Sirt3, Sirt6, and Sirt7. Most is known about Sirt1. This deacetylase protects from endothelial dysfunction, atherothrombosis, diet-induced obesity, type 2 diabetes, liver steatosis, and myocardial infarction. Sirt3 provides beneficial effects in the context of left ventricular hypertrophy, cardiomyopathy, oxidative stress, metabolic homeostasis, and dyslipidaemia. Sirt6 is implicated in ameliorating dyslipidaemia, cellular senescence, and left ventricular hypertrophy. Sirt7 plays a role in lipid metabolism and cardiomyopathies. Most of these data were derived from experimental findings in genetically modified mice, where NFκB, Pcsk9, low-density lipoprotein-receptor, PPARγ, superoxide dismutase 2, poly[adenosine diphosphate-ribose] polymerase 1, and endothelial nitric oxide synthase were identified among others as crucial molecular targets and/or partners of sirtuins. Of note, there is translational evidence for a role of sirtuins in patients with endothelial dysfunction, type 1 or type 2 diabetes and longevity. Given the availability of specific Sirt1 activators or pan-sirtuin activators that boost levels of the sirtuin cofactor NAD+, we anticipate that this field will move quickly from bench to bedsid

    Inflammation in acute myocardial infarction: the good, the bad and the ugly.

    Get PDF
    Convergent experimental and clinical evidence have established the pathophysiological importance of pro-inflammatory pathways in coronary artery disease. Notably, the interest in treating inflammation in patients suffering acute myocardial infarction (AMI) is now expanding from its chronic aspects to the acute setting. Few large outcome trials have proven the benefits of anti-inflammatory therapies on cardiovascular outcomes by targeting the residual inflammatory risk (RIR), i.e. the smouldering ember of low-grade inflammation persisting in the late phase after AMI. However, these studies have also taught us about potential risks of anti-inflammatory therapy after AMI, particularly related to impaired host defence. Recently, numerous smaller-scale trials have addressed the concept of targeting a deleterious flare of excessive inflammation in the early phase after AMI. Targeting different pathways and implementing various treatment regimens, those trials have met with varied degrees of success. Promising results have come from those studies intervening early on the interleukin-1 and -6 pathways. Taking lessons from such past research may inform an optimized approach to target post-AMI inflammation, tailored to spare 'The Good' (repair and defence) while treating 'The Bad' (smouldering RIR) and capturing 'The Ugly' (flaming early burst of excess inflammation in the acute phase). Key constituents of such a strategy may read as follows: select patients with large pro-inflammatory burden (i.e. large AMI); initiate treatment early (e.g. ≤12 h post-AMI); implement a precisely targeted anti-inflammatory agent; follow through with a tapering treatment regimen. This approach warrants testing in rigorous clinical trials

    Inflammation in acute myocardial infarction: the good, the bad and the ugly

    Get PDF
    Convergent experimental and clinical evidence have established the pathophysiological importance of pro-inflammatory pathways in coronary artery disease. Notably, the interest in treating inflammation in patients suffering acute myocardial infarction (AMI) is now expanding from its chronic aspects to the acute setting. Few large outcome trials have proven the benefits of anti-inflammatory therapies on cardiovascular outcomes by targeting the residual inflammatory risk (RIR), i.e. the smouldering ember of low-grade inflammation persisting in the late phase after AMI. However, these studies have also taught us about potential risks of anti-inflammatory therapy after AMI, particularly related to impaired host defence. Recently, numerous smaller-scale trials have addressed the concept of targeting a deleterious flare of excessive inflammation in the early phase after AMI. Targeting different pathways and implementing various treatment regimens, those trials have met with varied degrees of success. Promising results have come from those studies intervening early on the interleukin-1 and -6 pathways. Taking lessons from such past research may inform an optimized approach to target post-AMI inflammation, tailored to spare ‘The Good’ (repair and defence) while treating ‘The Bad’ (smouldering RIR) and capturing ‘The Ugly’ (flaming early burst of excess inflammation in the acute phase). Key constituents of such a strategy may read as follows: select patients with large pro-inflammatory burden (i.e. large AMI); initiate treatment early (e.g. ≤12 h post-AMI); implement a precisely targeted anti-inflammatory agent; follow through with a tapering treatment regimen. This approach warrants testing in rigorous clinical trials

    Guide to Leveraging Conducting Polymers and Hydrogels for Direct Current Stimulation

    Get PDF
    The tunable electrical properties of conducting polymers (CPs), their biocompatibility, fabrication versatility, and cost-efficiency make them an ideal coating material for stimulation electrodes in biomedical applications. Several biological processes like wound healing, neuronal regrowth, and cancer metastasis, which rely on constant electric fields, demand electrodes capable of delivering direct current stimulation (DCs) for long times without developing toxic electrochemical reactions. Recently, CPs such as poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT/PSS) have demonstrated outstanding capability for delivering DCs without damaging cells in culture while not requiring intermediate buffers, contrary to the current research setups relying on noble-metals and buffering bridges. However, clear understanding of how electrode design and CP synthesis influence DCs properties of these materials has not been provided until now. This study demonstrates that various PEDOT-based CP coatings and hydrogels on rough electrodes can deliver DCs without substantial changes to the electrode and the noticeable development of chemical by-products depending on the electrode area and polymer thickness. A comprehensive analysis of the tested coatings is provided according to the desired application and available resources, alongside a proposed explanation for the observed electrochemical behavior. The CPs tested herein can pave the way toward the widespread implementation of DCs as a therapeutic stimulation paradigm

    Beneficial effects of combinatorial micronutrition on body fat and atherosclerosis in mice

    Get PDF
    Aims More than two billion people worldwide are deficient in key micronutrients. Single micronutrients have been used at high doses to prevent and treat dietary insufficiencies. Yet the impact of combinations of micronutrients in small doses aiming to improve lipid disorders and the corresponding metabolic pathways remains incompletely understood. Thus, we investigated whether a combination of micronutrients would reduce fat accumulation and atherosclerosis in mice. Methods and results Lipoprotein receptor-null mice fed with an original combination of micronutrients incorporated into the daily chow showed reduced weight gain, body fat, plasma triglycerides, and increased oxygen consumption. These effects were achieved through enhanced lipid utilization and reduced lipid accumulation in metabolic organs and were mediated, in part, by the nuclear receptor PPARα. Moreover, the micronutrients partially prevented atherogenesis when administered early in life to apolipoprotein E-null mice. When the micronutrient treatment was started before conception, the anti-atherosclerotic effect was stronger in the progeny. This finding correlated with decreased post-prandial triglyceridaemia and vascular inflammation, two major atherogenic factors. Conclusion Our data indicate beneficial effects of a combination of micronutritients on body weight gain, hypertriglyceridaemia, liver steatosis, and atherosclerosis in mice, and thus our findings suggest a novel cost-effective combinatorial micronutrient-based strategy worthy of being tested in human
    • …
    corecore