55 research outputs found

    Metabolic and densitometric correlation between atherosclerotic plaque and trabecular bone: an 18F-Natrium-Fluoride PET/CT study

    Get PDF
    Increasing evidence links atherosclerosis to a decreased bone thickness. This correlation could reflect a bone/plaque interaction. Hereby we analyzed Hounsfield density (HU) and mineral turnover in bone and in the arterial calcifications (AC), using a computational method applied to PET/CT data. 79 18F-NaF PET/CT from patients with AC were retrospectively analyzed. Mean AC density and background-corrected uptake (TBR) were estimated after semi-automatic isocontour segmentation. The same values were assessed in the trabecular bone, using an automatic adaptive thresholding method. Patients were then stratified into terciles, according to their mean HU plaque density ("light", "medium" or "heavy" calcifications"). 35 18F-NaF PET/CT from patients without AC served as controls. Vertebral density and TBR were lower in patients than in controls (137\ub125 vs. 160\ub114 HU, P<0.001); (6.2\ub13.9 vs. 8.4\ub13.4, P<0.05). Mean trabecular TBR values were 8.3\ub14, 4.5\ub12.1 and 3.5\ub11.8 in light, medium and heavy AC groups, respectively (P<0.05 for light vs. medium and P<0.01 for light vs. heavy). Similarly, mean trabecular HU was 143\ub119, 127\ub126 and 119\ub118 in the three groups, respectively (P<0.01 for light vs. heavy). Mean AC density was inversely associated with the trabecular HU (R=-0.56, P<0.01). Conversely, plaques' TBR directly correlated with the one in trabecular bone (R=0.63, P<0.001). At multivariate analysis, the sole predictor of vertebral density was plaque HU (P<0.05). Our data highlight a correlation between plaque and bone morpho-functional parameters and suggest that observing skeletal bone characteristics could represent a novel window on atherosclerosis pathophysiology

    Allelic Origin of Protease-Sensitive and Protease-Resistant Prion Protein Isoforms in Gerstmann-Sträussler-Scheinker Disease with the P102L Mutation

    Get PDF
    Gerstmann-Sträussler-Scheinker (GSS) disease is a dominantly inherited prion disease associated with point mutations in the Prion Protein gene. The most frequent mutation associated with GSS involves a proline-to-leucine substitution at residue 102 of the prion protein, and is characterized by marked variability at clinical, pathological and molecular levels. Previous investigations of GSS P102L have shown that disease-associated pathological prion protein, or PrPSc, consists of two main conformers, which under exogenous proteolysis generates a core fragment of 21 kDa and an internal fragment of 8 kDa. Both conformers are detected in subjects with spongiform degeneration, whereas only the 8 kDa fragment is recovered in cases lacking spongiosis. Several studies have reported an exclusive derivation of protease-resistant PrPSc isoforms from the mutated allele; however, more recently, the propagation of protease-resistant wild-type PrPSc has been described. Here we analyze the molecular and pathological phenotype of six GSS P102L cases characterized by the presence of 21 and 8 kDa PrP fragments and two subjects with only the 8 kDa PrP fragment. Using sensitive protein separation techniques and Western blots with antibodies differentially recognizing wild-type and mutant PrP we observed a range of PrPSc allelic conformers, either resistant or sensitive to protease treatment in all investigated subjects. Additionally, tissue deposition of protease-sensitive wild-type PrPSc molecules was seen by conventional PrP immunohistochemistry and paraffin-embedded tissue blot. Our findings enlarge the spectrum of conformational allelic PrPSc quasispecies propagating in GSS P102L thus providing a molecular support to the spectrum of disease phenotypes, and, in addition, impact the diagnostic role of PrP immunohistochemistry in prion diseases

    A case series of low dose bevacizumab and chemotherapy in heavily pretreated patients with epithelial ovarian cancer

    Get PDF
    Abstract Background The addition of bevacizumab to standard chemotherapy prolongs progression free survival in the first line treatment of epithelial ovarian cancer (EOC), but its cost/effectiveness is debated. We assessed the safety and activity of a lower dose of bevacizumab in pretreated advanced stage EOC. Methods We treated 15 patients, mostly with platinum resistant EOC, who had received a median of four prior cytotoxic regimens, with bevacizumab 5–7.5 mg/kg q21 days in combination with either carboplatin (n = 8), oral cyclofosfamide (n = 5) or weekly paclitaxel (n = 2). Bevacizumab was administered until disease progression. Tumor response was assessed by CA125 and fusion 18 F-FDG PET/contrast enhanced CT. Results The median number of bevacizumab cycles was 21 (range 3–59). The median baseline CA125 was 272 U/ml and decreased to 15.2 U/ml at nadir. Tumor response was 4 complete response (CR) (26.7%) and 7 partial response (PR) (46.7%) by chemotherapy (CT), with an overall response rate of 73.4% (95% CI, 51.0 – 95.8) according to Response Evaluation Criteria In Solid Tumors (RECIST), and 6 CR (40%) and 4 PR (26.7%) by PET, for an overall metabolic response rate of 67% (95%CI, 42.8 – 90.6) according to PET Response Criteria in Solid Tumors (PERCIST). Median progression free survival (PFS) was 21 months and median overall survival (OS) was 24 months. Grade 3 adverse events related to bevacizumab were hypertension (n = 2), proteinuria (n = 1) and epistaxis (n = 5). Treatment was delayed in five patients for nasal bleeding or uncontrolled hypertension. Conclusions Low-dose bevacizumab and chemotherapy was well tolerated and active in a heavily pretreated population of advanced EOC. Further studies should assess the activity of low dose bevacizumab in EOC.</p

    Immunopurification of Pathological Prion Protein Aggregates

    Get PDF
    Background: Prion diseases are fatal neurodegenerative disorders that can arise sporadically, be genetically inherited or acquired through infection. The key event in these diseases is misfolding of the cellular prion protein (PrP) into a pathogenic isoform that is rich in β-sheet structure. This conformational change may result in the formation of PrP, the prion isoform of PrP, which propagates itself by imprinting its aberrant conformation onto PrP molecules. A great deal of effort has been devoted to developing protocols for purifying PrP for structural studies, and testing its biological properties. Most procedures rely on protease digestion, allowing efficient purification of PrP27-30, the protease-resistant core of PrP. However, protease treatment cannot be used to isolate abnormal forms of PrP lacking conventional protease resistance, such as those found in several genetic and atypical sporadic cases. Principal Findings: We developed a method for purifying pathological PrP molecules based on sequential centrifugation and immunoprecipitation with a monoclonal antibody selective for aggregated PrP. With this procedure we purified full-length PrP and mutant PrP aggregates at electrophoretic homogeneity. PrP purified from prion-infected mice was able to seed misfolding of PrP in a protein misfolding cyclic amplification reaction, and mutant PrP aggregates from transgenic mice were toxic to cultured neurons. Significance: The immunopurification protocol described here isolates biologically active forms of aggregated PrP. These preparations may be useful for investigating the structural and chemico-physical properties of infectious and neurotoxic PrP aggregates

    Ab Initio Non-Covalent Crystal Field Theory for Lanthanide Complexes: A Multiconfigurational Non-Orthogonal Group Functions Approach

    No full text
    We present a non-orthogonal fragment ab initio methodology for the calculation of crystal field energy levels and magnetic properties in lanthanide complexes, implementing a systematic description of non-covalent contributions to metal-ligand bonding. The approach has two steps. In the first step, appropriate ab initio wavefunctions for the various ionic fragments (lanthanide ion and coordinating ligands) are separately optimized, accounting for the electrostatic influence of the surrounding environment, within various approximations. In the second and final step, the scalar relativistic (DKH2) electrostatic Hamiltonian of the whole molecule is represented on the basis of the optimized metal-ligand multiconfigurational non-orthogonal group functions (MC-NOGF), and reduced to an effective (2J+1)-dimensional non-orthogonal Configuration Interaction (CI) problem via L{\"o}wdin-partitioning. Within the proposed formalism, the projected Hamiltonian can be implemented to any desired order of perturbation theory in the fragment-localised excitations out of the degenerate space, and its eigenvalues and eigenfunctions are systematic approximations to the crystal field energies and wavefunctions. We present a preliminary implementation of the proposed MC-NOGF method to first-order degenerate perturbation theory within our own ab initio code CERES, and compare its performance both with the simpler non-covalent orthogonal ab initio approach Fragment Ab Initio Model Potential (FAIMP) approximation, and with the full CAHF/CASCI-SO method, accounting for metal-ligand covalency in a mean-field manner. We find that energies and magnetic properties for 44 complexes obtained via an iteratively optimized version of our MC-NOGF first-order non-covalent method, compare remarkably well to the full CAHF/CASCI-SO method including metal-ligand covalency, and are superior to the best purely electrostatic results achieved via an iteratively optimized version of the FAIMP approach.<br /

    Spin-Orbit Coupling Descriptions of Magnetic Excitations in Lanthanide Complexes

    No full text
    We present a number of computationally cost-effective approaches to calculate magnetic excitations (i.e. crystal field energies and magnetic anisotropies in the lowest spin-orbit multiplet) in lanthanide complexes. In particular, we focus on the representation of the spin-orbit coupling term of the molecular Hamiltonian, which has been implemented within the quantum chemistry package CERES using various approximations to the Breit-Pauli Hamiltonian. The approximations include the (i) bare one-electron approximation, (ii) atomic mean field and molecular mean field approximations of the two-electron term, (iii) full representation of the Breit-Pauli Hamiltonian. Within the framework of the CERES implementation, the spin-orbit Hamiltonian is always fully diagonalized together with the electron repulsion Hamiltonian (CASCI-SO) on the full basis of Slater determinants arising within the 4f ligand field space. For the first time, we make full use of the Cholesky decomposition of two-electron spin-orbit integrals to speed up the calculation of the two-electron spin-orbit operator. We perform an extensive comparison of the different approximations on a set of lanthanide complexes varying both the lanthanide ion and the ligands. Surprisingly, while our results confirm the need of at least a mean field approach to accurately describe the spin-orbit coupling interaction within the ground Russell-Saunders term, we find that the simple bare one-electron spin-orbit Hamiltonian performs reasonably well to describe the crystal field split energies and g tensors within the ground spin-orbit multiplet, which characterize all the magnetic excitations responsible for lanthanide-based single-molecule magnetism.<br /
    corecore