9 research outputs found

    Loss of Liquid Lithium Coolant in an Accident in a DONES Test Cell Facility

    Get PDF
    A Demo-Oriented early NEutron Source (DONES) facility for material irradiation with nuclear is currently being designed. DONES aims to produce neutrons with fusion-relevant spectrum and fluence by means of D–Li stripping reactions occurring between a deuteron beam impacting a stable liquid lithium flowing film implementing the target. Given the hazard constituted by the liquid lithium inventory and the potential risk of reactions with water, air, and concrete eventually resulting in fire events, the Target Test Cell (TTC) is filled with helium and the reinforced concrete walls forming the bio-shield are covered with steel liners. A loss of Li in TTC, due to a large break in the Quench Tank, is postulated, and consequences are deterministically studied. With the TTC liner being water-cooled, the impact of the liner temperature rise following a leakage event is evaluated. Two separate MELCOR code models have been defined for the liquid lithium loop and water-cooled loop and are numerically coupled. The amount of leaked inventory dependent on the implemented safety logic and impact on TTC containment is evaluated. The water pressurization pattern within the liner cooling loop is studied to highlight possible risks of lithium–water/concrete reactions

    Development of a thermal-hydraulic model for the EU-DEMO Tokamak building and LOCA simulation

    Get PDF
    The EU-DEMO must demonstrate the possibility of generating electricity through nuclear fusion reactions. Moreover, it must denote the necessary technologies to control a powerful plasma with adequate availability and to meet the safety requirements for plant licensing. However, the extensive radioactive materials inventory, the complexity of the plant, and the presence of massive energy sources require a rigorous safety approach to fully realize fusion power’s environmental advantages. The Tokamak building barrier design must address two main issues: radioactive mass transport hazards and energy-related or pressure/vacuum hazards. Safety studies are performed in the frame of the EUROfusion Safety And Environment (SAE) work package to support design improvement and evaluate the thermal-hydraulic behavior of confinement building environments during accident conditions in addition to source term mobilization. This paper focuses on developing a thermal-hydraulic model of the EU-DEMO Tokamak building. A preliminary model of the heat ventilation and air conditioning system and vent detritiation system is developed. A loss-of-coolant accident is studied by investigating the Tokamak building pressurization, source term mobilization, and release. Different nodalizations were compared, highlighting their effects on source term estimation. Results suggest that the building design should be improved to maintain the pressure below safety limits; some mitigative systems are preliminarily investigated for this purpose

    Development of a Thermal-Hydraulic Model for the EU-DEMO Tokamak Building and LOCA Simulation

    No full text
    The EU-DEMO must demonstrate the possibility of generating electricity through nuclear fusion reactions. Moreover, it must denote the necessary technologies to control a powerful plasma with adequate availability and to meet the safety requirements for plant licensing. However, the extensive radioactive materials inventory, the complexity of the plant, and the presence of massive energy sources require a rigorous safety approach to fully realize fusion power’s environmental advantages. The Tokamak building barrier design must address two main issues: radioactive mass transport hazards and energy-related or pressure/vacuum hazards. Safety studies are performed in the frame of the EUROfusion Safety And Environment (SAE) work package to support design improvement and evaluate the thermal-hydraulic behavior of confinement building environments during accident conditions in addition to source term mobilization. This paper focuses on developing a thermal-hydraulic model of the EU-DEMO Tokamak building. A preliminary model of the heat ventilation and air conditioning system and vent detritiation system is developed. A loss-of-coolant accident is studied by investigating the Tokamak building pressurization, source term mobilization, and release. Different nodalizations were compared, highlighting their effects on source term estimation. Results suggest that the building design should be improved to maintain the pressure below safety limits; some mitigative systems are preliminarily investigated for this purpose

    Preliminary safety analysis of an in-vessel LOCA for the EU-DEMO WCLL blanket concept

    No full text
    In-vessel Loss Of Coolant Accident (LOCA) is one of the Design Basis Accident to be considered to support the future DEMOnstration power plant safety assessment. The water-cooled lithium-lead (WCLL) Breeding Blanket (BB) concept relies on Lithium-Lead as breeder, neutron multiplier and tritium carrier. The breeding modules are cooled by two independent pressurized water systems: the fist-wall (FW) and the breeding zone (BZ) coolant systems. The postulated initiating event (PIE) considered for this safety analysis is a double-ended pipe rupture of the blanket module first wall channels. This event causes the inlet of coolant into the plasma chamber volume triggering an unmitigated plasma disruption and the pressurization of the Vacuum Vessel (VV) volume. The fusion version of MELCOR code (ver. 1.8.6) is used to evaluate accident consequences for two different scenarios, with the presence and absence of the downstream isolation valves, respectively. The chemical reaction between the coolant and the first wall tungsten layer inside the VV has been considered together with the mobilization of the radioactive source term. Pressure and temperature transient behavior in the tokamak volumes demonstrate that safety margins are respected during the accidental sequence

    Water Chemistry Impact on Activated Corrosion Products: An Assessment on Tokamak Reactors

    Get PDF
    Activated Corrosion Product (ACP) formation and deposition pose a critical safety issue for nuclear fusion reactors. The working fluid transports the ACPs towards regions accessible by worker personnel, i.e., the steam generator. The code OSCAR-Fusion has been developed by the CEA (France) to evaluate the ACP generation and transport in closed water-cooled loops for fusion application. This work preliminary assesses the impact of water chemistry on the transport, precipitation, and deposition of corrosion products for the EU-DEMO divertor Plasma Facing Unit Primary Heat Transfer System. Sensitivity analyses and uncertainty quantification are needed due to the multi-physics phenomena involved in ACP formation and transport. The OSCAR-Fusion/RAVEN code coupling developed by the Sapienza University of Rome and ENEA are used. This work presents the perturbation results of different parameters chosen for a closed water-cooled loop considering a continuous scenario of 1888 days. The aim of this work is to preliminarily assess the variation of build-up of ACPs, perturbing the alkalizing agent concentration into the coolant, and the corrosion and release rates of different materials. The assessment of ACP formation deposition and transport is fundamental for source term identification, reduction of radiation exposure assessment, maintenance plan definition, design optimization, and waste management

    DEMO Divertor Cassette and Plasma facing Unit in Vessel Loss-of-Coolant Accident

    No full text
    As part of the pre-conceptual design activities for the European DEMOnstration plant, a carefully selected set of safety analyses have been performed to assess plant integrated performance and the capability to achieve expected targets while keeping it in a safe operation domain. The DEMO divertor is the in-vessel component in charge of exhausting the major part of the plasma ions’ thermal power in a region far from the plasma core to control plasma pollution. The divertor system accomplishes this goal by means of assemblies of cassette and target plasma facing units modules, respectively cooled with two independentheat-transfer systems. A deterministic assessment of a divertor in-vessel Loss-of-Coolant Accident is here considered. Both Design Basis Accident case simulating the rupture of an in-vessel pipe for the divertor cassette cooling loop, and a Design Extension Conditions accident case considering the additional rupture of an independent divertor target cooling loop are assessed. The plant response to such accidents is investigated, a comparison of the transient evolution in the two cases is provided, and design robustness with respect to safety objectives is discussed

    Design and Integration of the EU-DEMO Water-Cooled Lead Lithium Breeding Blanket

    Get PDF
    The water-cooled lead lithium breeding blanket (WCLL BB) is one of two BB candidate concepts to be chosen as the driver blanket of the EU-DEMO fusion reactor. Research activities carried out in the past decade, under the umbrella of the EUROfusion consortium, have allowed a quite advanced reactor architecture to be achieved. Moreover, significant efforts have been made in order to develop the WCLL BB pre-conceptual design following a holistic approach, identifying interfaces between components and systems while respecting a system engineering approach. This paper reports a description of the current WCLL BB architecture, focusing on the latest modifications in the BB reference layout aimed at evolving the design from its pre-conceptual version into a robust conceptual layout. In particular, the main rationale behind design choices and the BB’s overall performances are highlighted. The present paper also gives an overview of the integration between the BB and the different in-vessel systems interacting with it. In particular, interfaces with the tritium extraction and removal (TER) system and the primary heat transfer system (PHTS) are described. Attention is also paid to auxiliary systems devoted to heat the plasma, such as electron cyclotron heating (ECH). Indeed, the integration of this system in the BB will strongly impact the segment design since it envisages the introduction of significant cut-outs in the BB layout. A preliminary CAD model of the central outboard blanket (COB) segment housing the ECH cut-out has been set up and is reported in this paper. The chosen modeling strategy, adopted loads and boundary conditions, as well as obtained results, are reported in the paper and critically discussed
    corecore