5 research outputs found

    Steps towards sustainable solid phase peptide synthesis: use and recovery ofN-octyl pyrrolidone

    Get PDF
    The investigation of new green biogenic pyrrolidinones as alternative solvents toN,N-dimethylformamide (DMF) for solid phase peptide synthesis (SPPS) led to the identification ofN-octyl pyrrolidone (NOP) as the best candidate. NOP showed good performances in terms of swelling, coupling efficiency and low isomerization generating peptides with very high purity. A mixture of NOP with 20% dimethyl carbonate (DMC) allowed a decrease in solvent viscosity, making the mixture suitable for the automated solid-phase protocol. Aib-enkephalin and linear octreotide were successfully used to test the methodologies. It is worth noting that NOP, DMC and the piperidine used in the deprotection step could be easily recovered by direct distillation from the process waste mixture. The process mass intensity (PMI), being reduced by 63-66%, achieved an outstanding value representing a clear step forward in achieving green SPPS

    Sustainability in peptide chemistry: current synthesis and purification technologies and future challenges.

    Get PDF
    Developing greener synthesis processes is an inescapable necessity to transform the industrial landscape, mainly in the pharmaceutical sector, into a long-term, sustainable reality. In this context, the renaissance of peptides as medical treatments, and the enforcement of more stringent sustainability requirements by regulatory agencies, pushed chemists toward the introduction of sustainable processes to prepare highly pure, active pharmaceutical ingredients (APIs). Innovative upstream (synthesis) and downstream (purification) methodologies have been developed during the last 5 years with the introduction and optimization of several technologies in solid-phase peptide synthesis (SPPS), liquid-phase peptide synthesis (LPPS), chemoenzymatic peptide synthesis (CEPS), and chromatographic procedures. These innovations are also moving toward the introduction of continuous processes that represent one of the most important targets for iterative processes. This overview discusses the most recent efforts in making peptide chemistry greener. The extensive studies that were carried out on green solvents, reaction conditions, auxiliary reagents and purification technologies in the peptide segment can be useful to other fields of organic synthesi

    Speeding up sustainable solution-phase peptide synthesis using T3P® as a green coupling reagent: methods and challenges

    Get PDF
    In peptide synthesis, the issues related to poor sustainability, long reaction times and high process mass intensity (PMI) are necessary to promote actions aimed at redefining procedural aspects pro jected towards more sustainable synthetic processes. Herein, we report a fast, widely applicable and green solution-phase peptide synthesis (GSolPPS) via a continuous protocol using propylpho sphonic anhydride T3P® as the coupling reagent and N-benzyloxycarbonyl-protecting group (Z), which is easily removed by hydrogenation. Because N,N-dimethylformamide (DMF) replacement was a priority, the iterative process was per formed in EtOAc, pushing further on overall sustainability. The efficiency of the synthetic protocol in terms of conversion, racemi zation and reaction times allowed extending the scope of the work to the synthesis of the standard peptide Leu-enkephalin as a proof of concept. Among the various explored procedures, the one-pot protocol (Acont plus), avoiding work-ups, intermediate purification and any dispersion effect, allowed the achievement of PMI = 30 for each deprotection/coupling sequence necessary to introduce a single amino acid in the iterative process, without considering the possibility of solvent and base recovery. This value is the lowest reported for an oligopeptide synthesis protocol to dat

    Palladium Catalyst Recycling for Heck-Cassar-Sonogashira Cross-Coupling Reactions in Green Solvent/Base Blend

    No full text
    The identification of a green, versatile, user-friendly, and efficient methodology is necessary to facilitate the use of Heck-Cassar-Sonogashira (HCS) cross-coupling reaction in drug discovery and industrial production in the pharmaceutical segment. The Heck-Cassar and Sonogashira protocols, using N-hydroxyethylpyrrolidone (HEP)/water/N,N,N′,N′-tetramethyl guanidine (TMG) as green solvent/base mixture and sulfonated phosphine ligands, allowed to recycle the catalyst, always guaranteeing high yields and fast conversion under mild conditions, with aryl iodides, bromides, and triflates. No catalyst leakage or metal contamination of the final product were observed during the HCS recycling. To our knowledge, a turnover number (TON) up to 2375, a turnover frequency (TOF) of 158 h−1, and a process mass intensity (PMI) around 7 that decreased around 3 after solvent, base, and palladium recovery, represent one of the best results to date using a sustainable protocol. The Heck-Cassar protocol using sSPhos was successfully applied to the telescoped synthesis of Erlotinib (TON: 1380; TOF: 46 h−1)

    From virtual screening hits targeting a cryptic pocket in BACE-1 to a nontoxic brain permeable multitarget anti-Alzheimer lead with disease-modifying and cognition-enhancing effects

    No full text
    Starting from six potential hits identified in a virtual screening campaign directed to a cryptic pocket of BACE-1, at the edge of the catalytic cleft, we have synthesized and evaluated six hybrid compounds, designed to simultaneously reach BACE-1 secondary and catalytic sites and to exert additional activities of interest for Alzheimer's disease (AD). We have identified a lead compound with potent in vitro activity towards human BACE-1 and cholinesterases, moderate Aβ42 and tau antiaggregating activity, and brain permeability, which is nontoxic in neuronal cells and zebrafish embryos at concentrations above those required for the in vitro activities. This compound completely restored short- and long-term memory in a mouse model of AD (SAMP8) relative to healthy control strain SAMR1, shifted APP processing towards the non-amyloidogenic pathway, reduced tau phosphorylation, and increased the levels of synaptic proteins PSD95 and synaptophysin, thereby emerging as a promising disease-modifying, cognition-enhancing anti-AD lead
    corecore