60 research outputs found

    Knee kinematics and kinetics in former soccer players with a 16-year-old ACL injury – the effects of twelve weeks of knee-specific training

    Get PDF
    BACKGROUND: Training of neuromuscular control has become increasingly important and plays a major role in rehabilitation of subjects with an injury to the anterior cruciate ligament (ACL). Little is known, however, of the influence of this training on knee stiffness during loading. Increased knee stiffness occurs as a loading strategy of ACL-injured subjects and is associated with increased joint contact forces. Increased or altered joint loads contribute to the development of osteoarthritis. The aim of the study was to determine if knee stiffness, defined by changes in knee kinetics and kinematics of gait, step activity and cross-over hop could be reduced through a knee-specific 12-week training programme. METHODS: A 3-dimensional motion analysis system (VICON) and a force plate (AMTI) were used to calculate knee kinetics and kinematics before and after 12 weeks of knee-specific training in 12 males recruited from a cohort with ACL injury 16 years earlier. Twelve uninjured males matched for age, sex, BMI and activity level served as a reference group. Self-reported patient-relevant data were obtained by the KOOS questionnaire. RESULTS: There were no significant changes in knee stiffness during gait and step activity after training. For the cross-over hop, increased peak knee flexion during landing (from 44 to 48 degrees, p = 0.031) and increased internal knee extensor moment (1.28 to 1.55 Nm/kg, p = 0.017) were seen after training, indicating reduced knee stiffness. The KOOS sport and recreation score improved from 70 to 77 (p = 0.005) and was significantly correlated with the changes in knee flexion during landing for the cross-over hop (r = 0.6, p = 0.039). CONCLUSION: Knee-specific training improved lower extremity kinetics and kinematics, indicating reduced knee stiffness during demanding hop activity. Self-reported sport and recreational function correlated positively with the biomechanical changes supporting a clinical importance of the findings. Further studies are needed to confirm these results in women and in other ACL injured populations

    Resistive Exercise for Arthritic Cartilage Health (REACH): A randomized double-blind, sham-exercise controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This article provides the rationale and methodology, of the first randomised controlled trial to our knowledge designed to assess the efficacy of progressive resistance training on cartilage morphology in women with knee osteoarthritis.</p> <p>Development and progression of osteoarthritis is multifactorial, with obesity, quadriceps weakness, joint malalignment, and abnormal mechanical joint forces particularly relevant to this study. Progressive resistance training has been reported to improve pain and disability in osteoarthritic cohorts. However, the disease-modifying potential of progressive resistance training for the articular cartilage degeneration characteristic of osteoarthritis is unknown. Our aim was to investigate the effect of high intensity progressive resistance training on articular cartilage degeneration in women with knee osteoarthritis.</p> <p>Methods</p> <p>Our cohort consisted of women over 40 years of age with primary knee osteoarthritis, according to the American College of Rheumatology clinical criteria. Primary outcome was blinded measurement of cartilage morphology via magnetic resonance imaging scan of the tibiofemoral joint. Secondary outcomes included walking endurance, balance, muscle strength, endurance, power, and velocity, body composition, pain, disability, depressive symptoms, and quality of life.</p> <p>Participants were randomized into a supervised progressive resistance training or sham-exercise group. The progressive resistance training group trained muscles around the hip and knee at 80% of their peak strength and progressed 3% per session, 3 days per week for 6 months. The sham-exercise group completed all exercises except hip adduction, but without added resistance or progression. Outcomes were repeated at 3 and 6 months, except for the magnetic resonance imaging scan, which was only repeated at 6 months.</p> <p>Discussion</p> <p>Our results will provide an evaluation of the disease-modifying potential of progressive resistance training for osteoarthritis.</p> <p>Trial Registration</p> <p>ANZCTR Reference No. 12605000116628</p

    A New Direction to Athletic Performance: Understanding the Acute and Longitudinal Responses to Backward Running

    Get PDF
    Backward running (BR) is a form of locomotion that occurs in short bursts during many overground field and court sports. It has also traditionally been used in clinical settings as a method to rehabilitate lower body injuries. Comparisons between BR and forward running (FR) have led to the discovery that both may be generated by the same neural circuitry. Comparisons of the acute responses to FR reveal that BR is characterised by a smaller ratio of braking to propulsive forces, increased step frequency, decreased step length, increased muscle activity and reliance on isometric and concentric muscle actions. These biomechanical differences have been critical in informing recent scientific explorations which have discovered that BR can be used as a method for reducing injury and improving a variety of physical attributes deemed advantageous to sports performance. This includes improved lower body strength and power, decreased injury prevalence and improvements in change of direction performance following BR training. The current findings from research help improve our understanding of BR biomechanics and provide evidence which supports BR as a useful method to improve athlete performance. However, further acute and longitudinal research is needed to better understand the utility of BR in athletic performance programs

    Understanding acute ankle ligamentous sprain injury in sports

    Get PDF
    This paper summarizes the current understanding on acute ankle sprain injury, which is the most common acute sport trauma, accounting for about 14% of all sport-related injuries. Among, 80% are ligamentous sprains caused by explosive inversion or supination. The injury motion often happens at the subtalar joint and tears the anterior talofibular ligament (ATFL) which possesses the lowest ultimate load among the lateral ligaments at the ankle. For extrinsic risk factors to ankle sprain injury, prescribing orthosis decreases the risk while increased exercise intensity in soccer raises the risk. For intrinsic factors, a foot size with increased width, an increased ankle eversion to inversion strength, plantarflexion strength and ratio between dorsiflexion and plantarflexion strength, and limb dominance could increase the ankle sprain injury risk. Players with a previous sprain history, players wearing shoes with air cells, players who do not stretch before exercising, players with inferior single leg balance, and overweight players are 4.9, 4.3, 2.6, 2.4 and 3.9 times more likely to sustain an ankle sprain injury. The aetiology of most ankle sprain injuries is incorrect foot positioning at landing – a medially-deviated vertical ground reaction force causes an explosive supination or inversion moment at the subtalar joint in a short time (about 50 ms). Another aetiology is the delayed reaction time of the peroneal muscles at the lateral aspect of the ankle (60–90 ms). The failure supination or inversion torque is about 41–45 Nm to cause ligamentous rupture in simulated spraining tests on cadaver. A previous case report revealed that the ankle joint reached 48 degrees inversion and 10 degrees internal rotation during an accidental grade I ankle ligamentous sprain injury during a dynamic cutting trial in laboratory. Diagnosis techniques and grading systems vary, but the management of ankle ligamentous sprain injury is mainly conservative. Immobilization should not be used as it results in joint stiffness, muscle atrophy and loss of proprioception. Traditional Chinese medicine such as herbs, massage and acupuncture were well applied in China in managing sports injuries, and was reported to be effective in relieving pain, reducing swelling and edema, and restoring normal ankle function. Finally, the best practice of sports medicine would be to prevent the injury. Different previous approaches, including designing prophylactice devices, introducing functional interventions, as well as change of games rules were highlighted. This paper allows the readers to catch up with the previous researches on ankle sprain injury, and facilitate the future research idea on sport-related ankle sprain injury
    • …
    corecore